基于DBSCAN算法的北京市顺丰快递服务设施集群识别与空间特征分析  被引量:11

Cluster Identification and Spatial Characteristics Analysis of Shunfeng Express Service Facilities based on the DBSCAN Algorithm in Beijing

在线阅读下载全文

作  者:张亚 刘纪平[4] 周亮 王勇[4] 李鹏飞[1,2,3] ZHANG Ya;LIU Jiping;ZHOU Liang;WANG Yong;LI Peng fei(Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China;National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China;Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China;Chinese Academy of Surveying&Mapping,Beijing 100830,China;State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China)

机构地区:[1]兰州交通大学测绘与地理信息学院,兰州730070 [2]地理国情监测技术应用国家地方联合工程研究中心,兰州730070 [3]甘肃省地理国情监测工程实验室,兰州730070 [4]中国测绘科学研究院,北京100830 [5]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101

出  处:《地球信息科学学报》2020年第8期1630-1641,共12页Journal of Geo-information Science

基  金:中国测绘科学研究院基本科研业务费项目(AR1904);国家重点研发计划项目(2016YFC0803106、2017YBF0503601);兰州交通大学基金平台支持(201806)。

摘  要:电子商务跨越式发展为快递物流行业注入了新鲜血液促使国民经济达到新的增站点,服务网点作为连接快递企业和用户之间的桥梁纽带,逐渐成为城市地理和物流地理的重要研究对象。本文以北京市顺丰快递服务网点为研究对象,首次将DBSCAN聚类算法和无人值守的智能快递柜引入城市物流快递行业研究中,综合使用核密度分析、Ripley’s K函数等空间点模式分析方法,定量对比分析有人值守的合作网点和无人值守的智能快递柜两类顺丰快递服务网点的空间布局、集聚特征及影响因素。结果表明:①基于密度的DBSCAN聚类算法能够快速有效地识别出任意形状的快递服务网点集群,算法识别出24个智能快递柜集群,14个合作网点集群;②顺丰快递服务网点高密度区主要集中在人口密度大、经济繁华、交通便利的居住区和包含热门商圈的职住区附近,如双井、金融街、三里屯、学院路等;③合作网点和智能快递柜两类服务网点均呈集聚性分布,但集聚规模各不相同,具体表现为快递柜集聚规模明显大于合作网点,而集聚强度却小于合作网点;④智能快递柜集群密度大,服务半径小,更倾向服务于步行可达范围内的居住小区;合作网点集群密度小,服务半径大,服务对象随服务半径扩展至周边各大职区,对交通可达性的要求更高。⑤顺丰快递服务网点布局是地区经济水平、人口规模、交通状况、土地利用类型及城市功能区定位等多种因素综合作用的结果。The leap-forward development of e-commerce has injected fresh blood into the express delivery industry to promote the national economy.As a bridge between express delivery companies and users,service outlets have gradually become an important research object of urban geography and logistics geography.In this paper,by taking Shunfeng Express service outlets of Beijing as the research object,we introduced for the first time the DBSCAN clustering algorithm andunattended intelligent express cabinets into the urban logistics express industry.Spatial analysis methods such as the nuclear density analysis and Ripley’s K function wereused to quantitatively compare and analyze the spatial pattern,agglomeration features,and influencing factors of the two types of Shunfeng Express service outlets,namely,manned cooperative outlets and unattended intelligent express cabinets.Results show that:(1)The density-based DBSCAN clustering algorithm can quickly and efficiently identify clusters of express service outlets of any arbitrary shape.The algorithm identified 24 intelligent express cabinet clusters and 14 cooperative network clusters.(2)The high-density area of Shunfeng Express service outlets was mainly concentrated in residential areas with large population density,economic prosperity,convenient transportation,and residential areas in popular business districts,such as Shuangjing,Financial Street,Sanlitun,and Xueyuan Road.(3)The spatial distribution of the two types of service outlets,namely,cooperative outlets and smart express cabinets,was in an agglomeration mode,but the scale of agglomeration was different.The scale of express cabinet agglomeration was significantly larger than that of cooperative outlets,while the intensity of agglomeration was smaller than that of cooperative outlets.(4)The intelligent express cabinet had a large cluster density and a smaller service radius,and was more inclined to serve residential areas within the walking distance;the cooperative network had a smaller cluster density and a larger s

关 键 词:快递服务网点 空间分布特征 集聚模式 影响因素 DBSCAN算法 Ripley’s K函数 北京 

分 类 号:F724.6[经济管理—产业经济] F274F259.23

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象