基于PCNN与IFS的可见光与红外图像融合方法  被引量:8

Research on fusion method of visible and infrared image based on PCNN and IFS

在线阅读下载全文

作  者:戴文战[1] 王琪 DAI Wen-zhan;WANG Qi(School of Information and Electronic Engineering,ZhejiangGongshang University,Hangzhou,Zhejiang 310018,China)

机构地区:[1]浙江工商大学信息与电子工程学院,浙江杭州310018

出  处:《光电子.激光》2020年第7期738-744,共7页Journal of Optoelectronics·Laser

基  金:国家自然科学基金(61374022)资助项目。

摘  要:鉴于传统的可见光与红外图像融合方法存在的边缘模糊与清晰度低等问题,提出了一种基于脉冲耦合神经网络(PCNN)与直觉模糊集(IFS)的可见光与红外图像融合改进算法。该方法首先利用IHS变换,分离可见光图像的亮度信息I;其次,利用非下采样轮廓波变化(NSCT)将I分量与红外图像分别进行分解,得到高低频系数;对低频部分采用高斯隶属函数和直觉模糊集进行融合,对高频部分采用PCNN模型进行融合;再次,通过非下采样轮廓波逆变化得到融合图像的I分量;最后,进行IHS逆变换得到彩色融合图像。大量仿真结果表明,这种融合方法能很好地保留可见光与红外光源图像的特征信息和细节信息,融合后的图像的轮廓更加清晰,具有更良好的视觉效果。与现有的其它红外光和可见光图像融合方法相比,本文提出的方法,其融合图像的熵值、边缘保持度、互信息、标准差、结构相似度等指标都有明显的提高,有效地验证了本文算法的有效性。In view of the low edge blurring and low definition of traditional image fusion methods,an improved algorithm for visible and visible image fusion based on Pulse coupled neural network(PCNN) and intuitionistic fuzzy set(IFS) is proposed.In this method,the luminance and color information of visible images were separated by IHS,and the luminance I component value was obtained.Then,the I component and the infrared image were decomposed by non-down-sampling contour wave change(NSCT),and the high and low frequency coefficients were obtained,gaussian membership function and intuitionistic fuzzy set were used to fuse the low frequency parts,and PCNN model was used to fuse the high frequency parts,the I component of the final fusion image was obtained through the inverse change of the non-lower and non-lower sampled contour waves,and finally the color image was obtained by the contravariant IHS transformation.Experimental results show that the final fusion image has more detailed information and the fusion effect is also significantly improved,indicating the superiority of the algorithm.Compared with other existing infrared and visible image fusion methods,the proposed method has significantly improved entropy,edge retention,mutual information,standard deviation,structural similarity and other indexes of the fusion image,which effectively verifies the effectiveness of the proposed algorithm.

关 键 词:图像融合 可见光与红外图像:非下采样轮廓波变化 直觉模糊集 PCNN IHS 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象