检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘莹 孙建强 LIU Ying;SUN Jianqiang(College of Science,Hainan University,Haikou,Hainan 570228,China)
出 处:《山东科技大学学报(自然科学版)》2020年第6期102-108,共7页Journal of Shandong University of Science and Technology(Natural Science)
基 金:国家自然科学基金项目(11961020,11561018)。
摘 要:首先利用傅里叶拟谱方法对Riesz空间分数阶导数离散近似,再利用Boole离散线积分方法结合高阶平均向量场方法构造出Riesz空间分数阶非线性sine-Gordon方程新的保能量格式。最后利用新格式数值模拟不同初值条件下Riesz空间分数阶非线性sine-Gordon方程孤立波的演化行为。数值实验验证了新格式的有效性和精确性。In this paper a new energy-preserving scheme for Riesz space fractional nonlinear sine-Gordon equation is presented.The Riesz space fractional derivative was discretized initially by Fourier pseudo spectral method.Subsequently,a new energy-preserving scheme for Riesz space fractional nonlinear sine-Gordon equation was constructed by the Boole discrete line integral method and high order average vector field method.Finally,the new scheme was applied to numerically simulate the Riesz space fractional nonlinear sine-Gordon equation with different initial conditions.The validity and accuracy of the new scheme were verified by numerical experiments.
关 键 词:高阶平均向量场方法 Boole离散线积分法 Riesz空间分数阶非线性sine-Gordon方程 傅里叶拟谱方法 Riesz空间分数阶导数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.250.2