检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常颖 常大俊[2] CHANG Ying;CHANG Dajun(School of Computer Science and Engineering, Jilin University of Architecture and Technology, Changchun 130000, China;School of Electrical Information, Changchun University of Architecture and Civil Engineering, Changchun 130000, China)
机构地区:[1]吉林建筑科技学院计算机科学与工程学院,长春130000 [2]长春建筑学院电气信息学院,长春130000
出 处:《激光技术》2020年第6期779-783,共5页Laser Technology
基 金:国家自然科学基金资助项目(61703056);吉林建筑科技学院中青年重点扶持项目([2019]010)。
摘 要:为了同时对多种焊点缺陷类型进行快速识别,解决现有焊接异常图像识别算法误检率与漏检率偏高的问题,设计了基于改进型卷积神经网络的深度学习算法。利用自组织映射分类技术,提高了卷积神经网络的数据选择自适应性,结合自适应矩估计分析,约束了焊接异常图像中特征集合的收敛条件。实验中将5种常见焊接异常图像以等比例随机分布的形式放入训练集、验证集和测试集中,再分别用传统识别算法(canny算法和k均值算法)和该算法进行测试。结果表明,对于桥连缺陷,3种方法均无误检、无漏检;对于小球缺陷,3种方法均符合要求,而canny算法的检出能力最优;对于偏球缺陷,3种算法的误检率分别是12.4%,7.3%和与1.4%,漏检率分别是13.3%,6.5%和1.1%;对于虚焊和少锡缺陷,该算法相比传统算法精度高约1个数量级。该算法在对多种焊点缺陷类型识别中具有明显优势。In order to quickly identify a variety of solder joint defect types and solve the problem of high false detection rate and missed detection rate of traditional welding abnormal image recognition algorithms,a deep learning algorithm based on an improved convolutional neural network was designed.The self-organizing map classification technology improves the data selection adaptability of the convolutional neural network.At the same time,it combines the adaptive moment estimation analysis to restrict the convergence conditions of the feature set in the welding abnormal image.In the experiment,five kinds of common welding anomaly images were randomly distributed into the training set,verification set,and test set in the form of a random distribution of equal proportions.They were tested by traditional recognition algorithms(canny algorithm and k-means algorithm)and this deep learning algorithm,respectively.The results show that,three methods have no false detection and no missed detection for bridge defects.Three methods meet the requirements for small ball defects,and the detection ability of the canny algorithm is the best.For partial ball defects,the false detection rates of three algorithms are 12.4%,7.3%,and 1.4%,and the missed detection rates of three algorithms are 13.3%,6.5%,and 1.1%,respectively.For virtual soldering and tin-less defects,the accuracy of this algorithm is about an order of magnitude higher than that of traditional algorithms.It can be seen that this algorithm has obvious advantages in identifying multiple types of solder joint defects.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117