检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚沐言 陶丹[1] YAO Mu-yan;TAO Dan(School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]北京交通大学电子信息工程学院,北京100044
出 处:《计算机科学》2020年第11期19-24,共6页Computer Science
基 金:国家自然科学基金“面上”基金项目(61872027);综合业务网理论及关键技术国家重点实验室开放研究基金(ISN21-16)。
摘 要:现有智能手机往往使用广泛且存储有敏感信息,一旦丢失会造成巨大的安全隐患,故数据安全的重要性日益凸显。鉴于传统认证策略的脆弱性,提出了一种基于上采样单分类的隐式身份认证机制。首先,融合使用了时间、二维及三维等多类手机内置传感器从不同维度采集用户的行为特征。其次,为降低高维数据所含噪声对分类的影响,提出了一种精选特征并降维的行为特征筛选方法,对所提取的特征进行向量排序、筛选以及降维。特别地,考虑到现有基于二分类算法方案的局限性,采用SVM SMOTE对正样本数据进行上采样,并提出了基于单分类的认证决策机制,以在单类小规模训练集上实现分类。最后基于实际的样本集进行性能测试,结果表明,所提方案在准确率、FAR、FRR与AUC指标上的表现部分优于使用大规模数据进行训练的传统KNN二分类器。Nowadays,smartphones are widely used and stored with sensitive information,and the loss of any personal device can cause fatal information compromise.Thus,the people’s attention towards data security has been elevated to a higher level.Considering the delicacy of traditional authentications,this paper investigates an implicit authentication mechanism based on over-sampling and one-class classification,for pattern unlock on smartphones.First,a fusion of time,two-dimensional and three-dimensional sensors is employed,to collect user behavioral biometrics comprehensively.Second,in order to ease the impact caused by noise contained in high-dimensional data,a feature screening,which is composed of feature selection and dimensional compression,is designed.Particularly,in view of the existing limitations of the current binary classification schemes,SVM SMOTE is used to over-sample the user behavioral data,and a one-class classification authentication mechanism is delivered to implement classification,of which the learning process is only based on a single-class diminutive training set.A series of experiments have been conducted on actual data,and results show that the proposed scheme,when only relies on a single-class diminutive training set,performs partially better than the traditional binomial KNN classifier which is trained on large-scale data,in terms of accuracy,FAR,FRR and AUC.
关 键 词:隐式身份认证 手势密码 单类支持向量机 超小规模训练集 上采样
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28