检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈泉江 郭乃网 郑作梁 Shen Quanjiang;Guo Naiwang;Zheng Zuoliang(State Grid Shanghai Manuicipal Electric Power Company,Shanghai 200437,China;Transwarp Inc,Shanghai 200233,China)
机构地区:[1]上海市电力科学研究院,上海200437 [2]星环科技(上海)有限公司,上海200233
出 处:《计算机应用与软件》2020年第11期73-78,共6页Computer Applications and Software
基 金:国网上海市电力公司项目(52094017001N)。
摘 要:电力需求预测是城市发展和能源供应中十分重要的问题。虽然可以根据地理上的层级将其形式化为具有聚集约束的分层时间序列预测问题,但在传统的方法中,在确保聚合一致性的过程中往往会产生预测精度的损失。针对该问题,提出一种新型的基于聚类的分层电力时序预测方法。抛弃了过去直接对地理层级结构进行处理的做法,取而代之地通过聚类分析来深入探究电力消费模式,从而建立一个全新的,基于消费模式的时序层级结构。在此基础之上提出一种新的层级预测方法,大大改进了电力需求预测的效果。在真实数据场景下,大量实验证明了该方法性能显著优于传统方法,取得了最佳的精度。Electricity demand forecasting is a very important issue in urban development and energy supply.Although it can be formalized as a hierarchical time series prediction problem with aggregation constraints according to geographical hierarchy,the prediction accuracy is often lost in the process of ensuring aggregation consistency in traditional methods.To overcome this defect,we propose a new hierarchical electricity time series forecasting method based on clustering.We abandoned the past practice of dealing directly with the geographic hierarchy structure and used cluster analysis to study the power consumption pattern in depth,so as to establish a new time series hierarchy structure based on consumption pattern.On this basis,a new hierarchical forecasting method was proposed to improve the effect of power demand forecasting greatly.In the real data scenarios,a large number of experiments show that the performance of our method is significantly better than the traditional methods,and the best accuracy is achieved.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33