基于空间MPC算法的矿用车辆轨迹跟踪研究  被引量:4

Spatial Model Predictive Control for Trajectory Tracking of Autonomous Vehicle in Coal Mine

在线阅读下载全文

作  者:马浩楠 贾运红[1,2,3] MA Haonan;JIA Yunhong(China Coal Research Institute,Beijing 100013,Chin;School of Mechanical Electronic&Information Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;Taiyuan Institute of China Coal Research Institute,Taiyuan 030006,China)

机构地区:[1]煤炭科学研究总院,北京100013 [2]中国矿业大学(北京)机电与信息工程学院,北京100083 [3]中国煤炭科工集团太原研究院,太原030006

出  处:《重庆理工大学学报(自然科学)》2020年第10期50-57,共8页Journal of Chongqing University of Technology:Natural Science

基  金:山西省重点研发计划项目(201603D121030);山西省应用基础研究项目(201801D121189)。

摘  要:针对矿井无人运输车辆轨迹跟踪控制问题,提出了一种改进的空间模型预测控制(SMPC)算法。首先,将传统的基于时间的车辆运动学模型转换为基于空间的偏差模型,降低预测方程维度,减小控制器的计算负担;其次,让目标函数最小化车辆转向曲率的1、2阶导数和横向位移偏差,通过优化车辆转向曲率的1、2阶导数减少转向角突然变化对转向部件和车辆结构造成的损伤,保证轨迹跟踪精确性的同时确保车辆行驶的平稳性;最后,将目标函数转化为二次规划问题进行求解最优曲率。模拟井下巷道条件在双移线工况和实际工况下对车辆进行仿真实验,结果表明:在2种工况下,SMPC控制算法均能保证轨迹跟踪的精确性和平稳性,且控制效果优于标准MPC。此外,SMPC算法在不同负载下也具有良好的鲁棒性。An improved spatial model predictive control(SMPC)algorithm is proposed for the trajectory tracking control of mining auto-driving heavy vehicles.The innovation of this method is that firstly,the traditional time-based vehicle kinematics model is transformed into a space-based deviation model,which reduces the dimension of the prediction equation and reduces the computational burden of the controller.Secondly,the objective function is to minimize the vehicle curvature of First-order andsecond-order derivative and lateral displacement deviation,the first-order and second-order derivatives of the vehicle curvature can effectively reduce the damage caused by the sudden change of steering angle to the steering component and the vehicle structure,which ensure the accuracy of the trajectory tracking while ensuring the vehicle travels;Finally,the objective function is transformed into a quadratic programming problem to solve the optimal curvature.In this paper,the vehicle simulation experiments were carried out in the simulated roadway conditions under both double shifting and actual working conditions.The results showed that the SMPC control algorithm could guarantee the accuracy and smoothness of track tracking under both working conditions,and the control effect was better than the standard MPC.In addition,SMPC algorithm has good robustness under different loads.

关 键 词:空间模型预测控制 矿用重型车辆 弗莱纳框架 

分 类 号:TP273.5[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象