检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘斌[1] 程方毅 龚德文 Liu Bin;Cheng Fangyi;Gong Dewen(Key Laboratory of Polymer Processing Engineering of Ministry of Education,South China University of Technology//Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advance Manufacturing//National Engineering Research Center of Novel Equipment for Polymer Processing,Guangzhou 510641,China;Guangdong Changheng Intelligent Technology Co.,Ltd.,Dongguan,Guangdong 519000,China)
机构地区:[1]华南理工大学聚合物成型加工工程教育部重点实验室//广东省高分子先进制造技术及装备重点实验室//聚合物新型成型装备国家工程研究中心,广州510641 [2]广东昌恒智能装备科技有限公司,广东东莞519000
出 处:《机电工程技术》2020年第10期104-109,共6页Mechanical & Electrical Engineering Technology
摘 要:计算机视觉、深度学习的融合发展是推进物流自动化产业智能化的必然途径。介绍了条形码技术和FRID技术在物流自动化的应用特点,聚焦图像识别技术中图像分类技术和OCR技术在物流自动化中的应用现状,阐述图像识别关键技术简况及分类依据等。探讨研究与应用中存在的问题与难点,以期为构建更快、更准确的自动分拣系统提供参考。The integrated development of computer vision and deep learning is an inevitable way to promote the intelligence of logistics automation industry.The application characteristics of barcode technology and FRID technology in logistics automation were introduced,the application status of image classification technology and OCR technology in logistics automation were focused,the key technology of image recognition and classification basis were described.The problems and difficulties existing in the research and application were discussed in order to provide references for constructing a faster and more accurate automatic sorting system.
关 键 词:物流自动化 条形码技术 图像自动识别 字符识别 卷积神经网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124