检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡剑平 雷蕴奇[2] 陈明明 王宁 张双越 Jianping CAI;Yunqi LEI;Mingming CHEN;Ning WANG;Shuangyue ZHANG(College of Information and Smart Electromechanical Engineering,Xiamen Huaxia University,Xiamen 361021,China;School of Informatics,Xiamen University,Xiamen 361005,China)
机构地区:[1]厦门华厦学院信息与智能机电学院,厦门361021 [2]厦门大学信息学院,厦门361005
出 处:《中国科学:信息科学》2020年第10期1544-1558,共15页Scientia Sinica(Informationis)
基 金:国家自然科学基金面上项目(批准号:61671397);福建省中青年教师教育科研项目(批准号:JT180779)资助。
摘 要:作为推荐系统的重要组成部分,协同过滤已成为了当今主流的推荐方法之一.其中基于潜在因子的协同过滤常采用SVD推荐模型分析用户喜好.近年来,随着SVD推荐模型研究的深入,SVD++,TrustSVD等一类带有隐式反馈的SVD推荐模型被相继提出.此类模型能更有效地从有限的数据源中挖掘有用信息并取得了较好的效果,因此受到了人们广泛关注.然而,现有文献大多关注于模型设计,缺乏专门针对带有隐式反馈的SVD推荐模型的高效求解算法.为此,本文首先研究了一般性的SVD推荐模型梯度求解框架,然后以SVD++推荐模型为突破口,基于块梯度下降方法设计了高效求解算法BCDSVD++并解决了容量矩阵求逆、稀疏数据优化处理等两个关键问题.实验表明,本文所设计的BCDSVD++算法具有比传统的并行梯度下降法更高效的求解效率及收敛能力.Collaborative filtering,an important part of the recommendation system,has become a mainstream recommendation method.In collaborative filtering methods based on potential factors,SVD recommendation models are often used to analyze user preferences.With the recent research of SVD recommendation models,some SVD recommendation models with implicit feedback,such as SVD++and Trust SVD,have been successively proposed.These types of models can more effectively mine useful information from limited data sources and achieve better results than traditional SVD recommendation model,thereby garnering widespread attention.However,most existing papers focus on model design and the lack of efficient algorithms for SVD recommendation models with implicit feedback.Therefore,this paper first studies the general gradient solution framework of the SVD recommendation model.Then,it considers the SVD++recommendation model as a breakthrough and designs an efficient solution algorithm,namely,BCDSVD++,based on the block coordinate descent method.Furthermore,we solve the two key problems of capacity matrix inversion and sparse data optimization processing.Experiments show that the proposed BCDSVD++algorithm yields better solution efficiency and convergence ability than the traditional parallel gradient descent method.
关 键 词:SVD推荐模型 隐式反馈 SVD++ 块坐标下降法 协同过滤
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171