检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹泽卫 欧阳[1] 林冬婷 李柏林[1] Cao Zewei;Ou Yang;Lin Dongting;Li Bailin(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出 处:《电子测量与仪器学报》2020年第8期159-166,共8页Journal of Electronic Measurement and Instrumentation
摘 要:针对点阵字符因错误分割导致识别准确率较低的问题,提出了一种基于卷积神经网络(CNNs)识别反馈的点阵字符检测方法。首先采用多尺度窗口获取多个候选区域并建立CNNs对其进行识别,利用投票机制对多个识别结果进行综合决策,然后根据决策结果反向定位点阵字符并完成字符分割,最后提出一种滑动翻转窗口对所有字符进行分割与识别。实验结果表明,该方法在点阵字符的定位准确率和识别率方面都优于传统字符识别方法,分别达到了97.53%和97.50%。The recognition accuracy of dot matrix characters is low due to error segmentation, this paper proposes a dot matrix character detection method based on convolutional neural network(CNNs) recognition feedback. Firstly, multi-scale windows are used to acquire multiple candidate regions and CNNs are established to identify them. The voting mechanism is used to make comprehensive decisions on multiple recognition results, and then the lattice characters are reversed according to the decision result and the character segmentation is completed. Finally, a sliding flip window is proposed to segment and identify all characters. The experimental results show that the proposed method outperforms the traditional character recognition method in the segmentation accuracy and recognition rate of dot matrix characters, reaching 97.53% and 97.50% respectively.
关 键 词:多尺度滑动窗口 卷积神经网络 滑动翻转窗口 反馈定位 点阵字符识别
分 类 号:TN911.73[电子电信—通信与信息系统] TP391.41[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26