检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周路明[1] 郑明才 ZHOU Luming;ZHENG Mingcai(Department of Information Statistics, Hubei Cancer Hospital, Wuhan 430079, China;Network Engineering College, Jiangxi Software Vocational and Technical University, Nanchang 330041, China)
机构地区:[1]湖北省肿瘤医院信息统计科,湖北武汉430079 [2]江西软件职业技术大学网络工程学院,江西南昌330041
出 处:《微型电脑应用》2020年第11期93-97,共5页Microcomputer Applications
摘 要:随着互联网技术的快速发展,网络用户的数量激增,仅在国内就有着接近一半人口的用户。如此大规模的网络给网络攻击者带来了巨大的潜在利益,也给网络入侵的防御提出了更高的要求。传统的网络防御手段因其仅能针对特定的网络入侵行为进行甄别,无法智能化、动态化的应对复杂的网络入侵行为已经逐渐难以满足当下需求。因此,针对网络入侵防御的问题,提出了一种基于深度学习的入侵检测手段,并阐述了入侵防御系统的设计方法。首先,介绍了目前网络入侵防御所面临的严峻形势;其次,阐述了网络入侵检测与网络入侵防御中的框架性问题;再次,详细阐述了基于深度学习的入侵检测算法的设计方法,并阐述了入侵防御设计的要点,最后,入侵检测算法的有效性和准确性通过仿真进行了验证。仿真结果表明所设计的算法能够对复杂的入侵数据具有较高的威胁检测准确度,测试数据集对按照公式计算最终测得的检测率为95.22%和误报率为0.67%。With the rapid development of Internet technologies,the number of network users has increased rapidly.In China,there are nearly half of the population of users.Such a large scale network has brought huge potential benefits to network attackers,and puts forward higher requirements for the defense of network intrusion.Traditional network defense means can only screen specific network intrusions and cannot deal with complex network intrusions intelligently and dynamically.Therefore,it is increasingly difficult to meet current needs.Aiming at the problem of network intrusion prevention,this paper proposes an intrusion detection method based on deep learning,and expounds the design method of intrusion prevention system.Firstly,the paper introduces the severe situation of network intrusion prevention.Secondly,the framework of network intrusion detection and network intrusion prevention is discussed.Thirdly,the design method of intrusion detection algorithm based on deep learning is elaborately explained,and the key points of intrusion prevention design are expounded.Finally,the effectiveness and accuracy of intrusion detection algorithm are verified through the simulation.Simulation results show that the proposed algorithm has a high threat detection accuracy for complex intrusion data,and the detection rate of the test data set calculated according to the formula is 95.22%and the false alarm rate is 0.67%.
分 类 号:TP242.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3