检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆斌[1] 严利民[1] 陈志恒 Lu Bin;Yan Limin;Chen Zhiheng(Microelectronics R&D Center,Shanghai University,Shanghai 200444,China)
机构地区:[1]上海大学微电子研究与开发中心,上海200444
出 处:《计算机应用研究》2020年第12期3807-3810,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61674100)。
摘 要:去雾技术已经在单幅图像上取得了较大的进展,但是由于时间复杂度较高,无法满足高清视频去雾的实时性要求。针对该问题,提出了基于硬件架构优化的暗通道先验去雾算法,通过硬件导向的双尺度联合滤波法和阈值比较法来简化透射率和大气光值的计算复杂度,同时利用帧间依赖性约束来抑制视频去雾中的闪烁噪声。实验结果表明,所提算法的去雾速度达到了148.2 Mpixel/s,相比软件的方式提高了约55倍,实际对1920×1080分辨率全高清视频的去雾速度达到69 fps,满足实时性要求且去雾质量高。Dehazing technology has made great progress on a single image,but due to the high time complexity,it cannot meet the real-time requirements of HD video dehazing.Aiming at this problem,this paper proposed a dark channel prior dehazing algorithm based on hardware architecture optimization.It used the hardware-oriented dual-scale joint filtering method and threshold comparison method to simplify the computational complexity of transmittance and atmospheric light value.At the same time,it used the interframe dependency constraint to suppress the flicker noise in the video defogging.The experimental results show that the dehazing speed of the proposed algorithm reaches 148.2 Mpixel/s,which is about 55 times higher than that implemented by software programming,and the dehazing speed of full HD video at 1920×1080 resolution reaches 69 fps,meeting the real-time requirements and high dehazing quality.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33