针对气体传感器漂移补偿的支持向量机自训练分类方法  被引量:1

An effective self-training classification method based on support vector machine for gas sensor drift compensation

在线阅读下载全文

作  者:董晓睿 商凯 杨建磊[1] 崔健 DONG Xiaorui;SHANG Kai;YANG Jianlei;CUI Jian(Shengli College,China University of Petroleum,Dongying,Shandong 257000,China)

机构地区:[1]中国石油大学胜利学院,山东东营257000

出  处:《南昌大学学报(理科版)》2020年第4期397-401,共5页Journal of Nanchang University(Natural Science)

基  金:国家自然科学基金资助项目(61262047)。

摘  要:传感器漂移是影响气体传感检测系统稳定性的重要问题之一。本文提出了一种基于支持向量机的在线漂移补偿的分类模型设计方法,并在此基础上引入遗忘系数以应对漂移影响和保证数据集平衡状态,引入起学系数来避免因数据集不平衡而导致模型一直无法得到训练的极端情况出现。经实验验证,改进的分类模型能够延长传感器的可靠使用时间,并对短中期的分类效果有一定程度的提升,模型自训练过程无须人工参与,符合现实应用场景。本文提出的研究思路和方法对相关领域的研究有一定的参考意义。Sensor drift is one of the important problems affecting the stability of gas sensing detection system.In this paper,a support vector machine(SVM)self-training classification model for online drift compensation is proposed,in which the forgetting factor is introduced to cope with the influence of drift and ensure the balance state of the data set,and the priming factor is introduced to avoid the extreme situation that the model cannot be trained due to the imbalance of the training set.The experimental results show that the improved classification model can extend the reliable service time of the sensor and improve the classification effect in the short and medium term to a certain extent.The self-training process of the model does not require manual participation,which is in line with the practical application scenario.The research ideas and methods put forward in this paper have certain reference significance to the research in related fields.

关 键 词:传感器漂移 支持向量机 自训练 化学气体传感器 在线漂移补偿 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象