基于CE-MS的高通量高灵敏度快速氨基酸分析方法  被引量:1

New Analytical Method of Amino Acids with High Throughput, High Sensitivity and Fast Analytic Time Based on CE-MS

在线阅读下载全文

作  者:赵洁妤 裴培 董冰 杨俊 ZHAO Jieyu;PEI Pei;DONG Bing;YANG Jun(Hebei University of Environmental Engineering,Qinhuangdao 066102)

机构地区:[1]河北环境工程学院,秦皇岛066102

出  处:《食品工业》2020年第10期314-318,共5页The Food Industry

基  金:河北省重点研发计划(20373902D);河北省自然科学基金项目(B2019415024);秦皇岛市科学技术研究与发展项目(201805A195,201902A037);河北环境工程学院项目(BJ201809)。

摘  要:为了更快速精准检测到极性强、干扰大、含量低、难分析的氨基酸,建立了基于CE-MS的新方法。利用连续多段进样方式优化在线富集效果,并将两技术联用,用于烟草氨基酸的快速检测。结果表明,16种氨基酸在0.0007~6μg/m L质量浓度范围具有良好的线性关系,相关系数在0.9932~1之间,检测限范围为1.31~11.54μg/kg,大部分氨基酸加标量在0.15,0.3和1.5μg/mL三个水平下回收率范围为75%~125%,方法精密度小于10%。仅需4 min就可实现16种氨基酸的快速分析,同时样品分析通量提高5倍,灵敏度提高17.5~33.1倍。该方法具有高灵敏、高通量、快速、准确等优点,适用于生物和食品样品中氨基酸的快速精准检测。In order to detect amino acid in high polarity,high interference and low concentration quickly and accurately,a novel analytical method was established based on CE-MS.The developed strategy was achieved by continuously multiple and large volume injections and online sample preconcentration,and successfully applied in fast analysis of tobacco amino acids.The results indicated that 16 amino acids showed good literary in the range of 0.0007-6μg/mL with the linear correlation coefficient range of 0.9932-1,and LOD was 1.31-11.54μg/kg.The recoveries of most amino acids ranged from 75%to 125%at 0.15,0.3 and 1.5μg/mL,and the relative standard deviation(RSD)was less than 10%.The analytical time of 16 amino acids was reduced to 4 min.The method throughput was enhanced 5 times,and its sensitivity was increased 17.5-33.1 times in the meanwhile.These results indicated that the developed method was very suitable for the analysis of amino acids in biological and food samples with high sensitivity,throughput,speed and accuracy.

关 键 词:毛细管电泳-电泳 氨基酸 在线富集 连续多进样 

分 类 号:O657.63[理学—分析化学] TS207.3[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象