检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李舒琪 LI Shuqi(College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,Xinjiang)
机构地区:[1]新疆大学数学与系统科学学院,新疆乌鲁木齐830046
出 处:《四川师范大学学报(自然科学版)》2020年第6期787-794,共8页Journal of Sichuan Normal University(Natural Science)
基 金:国家自然科学基金(11401508和11461066)。
摘 要:主要研究非齐次Chaplygin气体情形下非对称Keyfitz-Kranzer方程组的Riemann问题.首先引入一个新的变量把非齐次Chaplygin气体非对称Keyfitz-Kranzer方程组转化为守恒形式,随后利用特征分析法和相平面分析法得到守恒形式Riemann问题的整体结构,当Riemann初值满足某些特定条件时,其Riemann解中会出现δ激波.通过构造和利用广义Rankine-Hugoniot条件得到了δ激波的位置、传播速度和强度.然后研究非齐次Chaplygin气体非对称Keyfitz-Kranzer方程组,得到Riemann问题的δ激波解,并严格证明其在分布意义下弱解的存在性.In this paper,the Riemann problem for the one-dimensional nonsymmetric Keyfitz-Kranzer systems with a nonhomogeneous term for the Chaplygin gas is considered.We can reformulate the conservative Keyfitz-Kranzer gas equations by introducing a new velocity.It is shown that the delta shock wave appears in the Riemann solutions of the conservative form in some certain situations by characteristics analysis and phase-plane analysis.According to establishing the generalized Rankine-Hugoniot conditions of delta shock wave,we obtain the position,propagation speed and strength of delta shock.Then we return to the nonsymmetric Keyfitz-Kranzer systems with a nonhomogeneous term and obtain the delta shock wave,and strictly prove the existence of the weak solutions in the sense of distributions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147