改进的动态PPI网络构建与蛋白质功能预测算法  被引量:1

Improved Dynamic PPI Network Construction and Protein Function Prediction Algorithm

在线阅读下载全文

作  者:李鹏 闵慧[4] 罗爱静 瞿昊宇[2] 伊娜 许家祺 LI Peng;MIN Hui;LUO Aijing;QU Haoyu;YI Na;XU Jiaqi(The Third Xiangya Hospital of Central South University,Changsha 410006,China;School of Information Science and Engineering,Hunan University of Chinese Medicine,Changsha 410208,China;Key Laboratory of Medical Information Research of College of Hunan Province(Central South University),Changsha 410006,China;School of Software,Hunan College of Information,Changsha 410200,China)

机构地区:[1]中南大学湘雅三医院,长沙410006 [2]湖南中医药大学信息科学与工程学院,长沙410208 [3]医学信息研究湖南省普通高等学校重点实验室(中南大学),长沙410006 [4]湖南信息职业技术学院软件学院,长沙410200

出  处:《计算机工程》2020年第12期52-59,共8页Computer Engineering

基  金:国家重点研发计划(2017YFC1703306);国家社会科学基金重点项目(17AZD037);湖南省自然科学基金青年项目(2019JJ50453);湖南省自然科学基金面上项目(2018JJ2301);湖南省科技厅重点项目(2018JJ2301);湖南中医药大学开放基金(2018JK02)。

摘  要:构建可靠的动态蛋白质网络是提高蛋白质未知功能预测和蛋白质复合物识别性能的关键,然而现有蛋白质网络构建和功能预测方法普遍存在鲁棒性低、预测精度不足等问题。为此,设计改进的动态蛋白质网络构建算法。采用进化图对蛋白质相互作用进行建模,基于蛋白质的活性周期将整个蛋白质网络划分为多个时间片的动态子网,在各个子网内部依据蛋白质之间的连接强度确定相互作用关系,从而得到一个全局的动态蛋白质网络。在此基础上,通过考查未知功能蛋白质邻居节点功能注释情况的差异,提出基于功能关联得分或神经网络的功能预测算法IPA-PF。在多个公开生物数据集上的实验结果表明,IPA-PF算法的查全率、查准率和F-measure指标优于HPMM、D-PIN、EFM和FP-BMD算法,且对输入参数不敏感,在保证功能预测准确性的前提下,其时间复杂度处于合理范围内。How to construct a reliable dynamic protein network is one of the key problems that affect the prediction of unknown protein functions or the recognition of protein complexes.However,the existing protein network construction methods and function prediction methods generally have low robustness and low prediction accuracy.Therefore,this paper proposes an improved dynamic protein network construction algorithm.In this paper,protein-protein interactions are modeled based on the evolutionary graph,and then the whole protein network is divided into dynamic subnets of multiple time slices based on the active cycle of protein.The relationship of protein-protein interactions among the subnets are determined according to the connection strength between proteins,so the global dynamic protein network is obtained.On this basis,a function prediction algorithm,IPA-PF,based on the function correlation score or neural network is proposed by examining the differences of function annotation between neighbor nodes of unknown functional proteins.The experimental results on several open biological datasets show that the proposed algorithm outperforms the HPMM,D-PIN,EFM and FP-BMD algorithms in terms of the recall rate,precision and F-measure,and it is insensitive to input parameters.On the premise of ensuring the accuracy of function prediction,the time complexity of the proposed algorithm is within a reasonable range.

关 键 词:动态蛋白质网络 进化图 连接强度 功能预测 神经网络 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象