Bending analysis of magnetoelectroelastic nanoplates resting on Pasternak elastic foundation based on nonlocal theory  被引量:1

在线阅读下载全文

作  者:Wenjie FENG ZhenYAN JiLIN CZZHANG 

机构地区:[1]Department of Engineering Mechanics,Shijiazhuang Tiedao University,Shijiazhuang 050043,China [2]Hebei Key Laboratory of Smart Material and Structure Mechanics,Shijiazhuang Tiedao University,Shijiazhuang 050043,China [3]Department of Civil Engineering,University of Siegen,Siegen D-57068,Germany [4]China State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,International Center for Simulation Software in Engineering and Sciences,College of Mechanics and Materials,Hohai University,Nanjing 211100,China

出  处:《Applied Mathematics and Mechanics(English Edition)》2020年第12期1769-1786,共18页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.11872257 and 11572358);the German Research Foundation(No.ZH 15/14-1)。

摘  要:Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle.The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions(MPS)to solve the governing equations numerically.It is confirmed that for the present bending model,the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points.The effects of different boundary conditions,applied loads,and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method.Some important conclusions are drawn,which should be helpful for the design and applications of electromagnetic nanoplate structures.

关 键 词:magnetoelectroelastic(MEE)nanoplate bending nonlocal theory Mindlin plate theory method of particular solution(MPS) polynomial basis function 

分 类 号:O242[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象