检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢秋晨 梅楠 陈坚[2] 尹波 XIE Qiuchen;MEI Nan;CHEN Jian;YIN Bo(Department of Radiology;Department of Gastroenterology,Huashan Hospital,Fudan University,Shanghai 200040,China)
机构地区:[1]复旦大学附属华山医院放射科,上海200040 [2]复旦大学附属华山医院消化内科,上海200040
出 处:《上海医药》2020年第23期10-13,38,共5页Shanghai Medical & Pharmaceutical Journal
摘 要:在过去的几年里,深度学习的发展势头很强劲。在骨科和创伤学领域,已有一些研究使用深度学习来辅助检测X线片中的骨折。相比之下,在通过CT检测骨折和进行骨折分类方面,使用深度学习的研究还较少。本文概要介绍深度学习用于X线片和CT图像上骨折检测的方法、深度学习对骨伤影像学诊断的赋能潜力以及深度学习在骨折检测中的偏差和未来发展方向。In the past few years,the development momentum of deep learning has been very strong.In the field of orthopedics and traumatology,there have been some studies using deep learning to detect fractures in X-rays imaging.In contrast,there are relatively few deep learning studies to detect and classify fractures by CT.In this narrative review,we give a brief overview of deep learning techniques,describe the methods that deep learning has been applied to fracture detection in X-rays and CT imaging so far,discuss how deep learning empowers this field and comment on the bias and future development direction of this technology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249