基于平均法和多尺度法的输电线舞动解析解精度讨论  被引量:3

Discussion on the Analytical Solution Precision of Transmission Lines Galloping Based on Average Method and Multiscale Method

在线阅读下载全文

作  者:刘小会[1,2] 杨曙光 孙测世[2] 蔡萌琦 LIU Xiao-hui;YANG Shu-guang;SUN Ce-shi;CAI Meng-qi(State Key Laboratory of Bridges and Tunnels in Mountainous Areas, Chongqing Jiaotong University, Chongqing 400074, China;College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;College of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China)

机构地区:[1]重庆交通大学省部共建山区桥梁及隧道工程国家重点实验室,重庆400074 [2]重庆交通大学土木工程学院,重庆400074 [3]成都大学建筑与土木工程学院,成都610106

出  处:《科学技术与工程》2020年第31期12863-12871,共9页Science Technology and Engineering

基  金:国家自然科学基金(51308570,51808085);重庆市研究生科研创新项目(CYS19240);重庆市创新训练项目(S201910618016);成都市国际科技合作资助项目(2020-GH02-00059-HZ)。

摘  要:为了准确得到覆冰输电导线的舞动特征,对比了平均法和多尺度法得到的解析解与数值解的区别。结果表明平均法与零阶(ε0)多尺度法的解析解一致,相比较于数值解其误差随风速增大而逐渐增加,最大为19.2%;一阶(ε0,ε1)和二阶(ε0,ε1,ε2)多尺度解析解精度较高,最大误差仅为4.2%。并且发现由于激励的非线性导致了输电导线舞动的振动中心发生了漂移,采用平均法和零阶(ε0)多尺度得到的解析解中并没有漂移现象发生,但使用一阶(ε0,ε1)和二阶(ε0,ε1,ε2)多尺度解析解都发生了漂移现象并且和MATLAB的数值结果非常接近。In order to obtain the galloping characteristics of ice-covered conductors accurately,the analytical solution obtained by the average method and the multiscale method and the numerical solution were compared.The results show that the analytical solution obtained by the average method is consistent with the analytical solution obtained by the zero-order(ε0)multiscale method.Compared with the error of the numerical solution,the error of the analytical solution increases with the increase of wind speed with the top of 19.2%.While the error of the analytical solutions obtained by using the first-order(ε0,ε1)and second-order(ε0,ε1,ε2)multi-scale method is much smaller of 4.2%.Moreover,the vibration center of dancing conductors’moves is identified due to the nonlinear excitation.There’s no drift phenomenon occurring in the analytical solutions by the average method and zero-order(ε0)multiscale method.However,the drift phenomenon occurs in the analytical solutions by the first-order(ε0,ε1)and second-order(ε0,ε1,ε2)multiscale method and is very close to the numerical results of MATLAB.

关 键 词:非线性振动 输电线舞动 多尺度法 周期解析解 

分 类 号:TM753[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象