基于浅层卷积特征和双低秩表示的织物疵点检测算法研究  被引量:2

Fabric defect detection algorithm based on shallow CNN feature and double low-rank representation

在线阅读下载全文

作  者:江伴 谢晓峰 董燕[1] JIANG Ban;XIE Xiaofeng;DONG Yan(School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China;Office of Science and Technology, Zhongyuan University of Technology, Zhengzhou 450007, China)

机构地区:[1]中原工学院电子信息学院,河南郑州450007 [2]中原工学院科技处,河南郑州450007

出  处:《中原工学院学报》2020年第5期21-26,共6页Journal of Zhongyuan University of Technology

基  金:国家自然科学基金面上项目(61772576);国家自然科学基金河南省联合基金项目(U1804157);河南省教育厅科技项目(19A510027,16A540003)。

摘  要:鉴于低秩表示技术可用于实现织物背景和疵点的有效分类,已被应用于织物疵点检测,但相应检测结果依赖于织物纹理特征的有效表征和低秩表示模型的性能,提出了基于浅层卷积特征和双低秩表示的织物疵点检测算法。采用经过训练的浅层网络提取织物图像的深度特征,构建了特征矩阵;建立双低秩表示模型,实现了疵点与背景的有效分离;采用阈值分割算法对疵点区域进行了定位。实验结果表明,所提出的检测算法能有效地定位疵点区域,其检测精度优于其他方法。Fabric defect detection plays an important role in the quality control of textile.Traditional detection methods have low detection accuracy and poor adaptability.Low-rank representation model can divide the fabric image into defect-free background and sparse defects,and have proven applicable in fabric defect detection.However,the detection results of these methods depend on the effective characterization of fabric texture features and the performance of low-rank representation model.In this paper,a fabric defect detection method based on shallow CNN feature and double low-rank representation is proposed.The deep feature of fabric image is extracted by the pre-trained shallow network,and the fabric texture feature matrix is constructed.Then the double low-rank representation model is established to separate the defect from the background effectively.Finally,the defect region is located by threshold segmentation algorithm.Experimental results demonstrate that the proposed method can detect the defects with high accuracy,and is better than other methods.

关 键 词:织物图像 疵点检测 卷积神经网络 双低秩表示 浅层特征 

分 类 号:TG142.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象