检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鸿强[1] 孙红[2] 李民赞[2] LI Hong-qiang;SUN Hong;LI Min-zan(School of Science,Hebei University of Architecture,Zhangjiakou 075000,China;Key Laboratory of Modern Precision Agriculture System Integration Research,Ministry of Education,China Agriculture University,Beijing 100083,China)
机构地区:[1]河北建筑工程学院数理系,河北张家口075000 [2]中国农业大学现代精细农业系统集成研究教育部重点实验室,北京100083
出 处:《分析测试学报》2020年第11期1421-1426,共6页Journal of Instrumental Analysis
基 金:国家自然科学基金资助项目(31971785);河北省高等学校科学技术研究青年基金资助项目(QN2018075)。
摘 要:采用高光谱分析技术结合模式识别,建立了8种马铃薯微型种薯(大西洋、荷兰-14、荷兰十五041、荷兰十五Q8、冀张薯12号、冀张薯8号、兴佳2号和Y2)的分类检测方法。采集276个种薯样本,对860~1700 nm的原始光谱进行标准化、11点Savitzky-Golay平滑和4点差分一阶导数光谱预处理,将预处理后的光谱数据进行主成分分析,发现前3个主成分的累积贡献率为95.12%,包含了原始光谱的大部分信息,可作为分类变量。再分别使用线性判别分析、BP神经网络和支持向量机进行分类建模。最终通过分层、分步骤建立了8种马铃薯微型种薯的分类模型。首先采用线性判别分析模型区分大西洋、荷兰-14、荷兰十五041和其它品种,平均正确识别率达88.79%。再建立BP神经网络模型将其它品种样本区分为两类,一类为冀张薯8号和Y2,另一类为荷兰十五Q8、冀张薯12号和兴佳2号,平均正确识别率达93.24%。最后以BP神经网络模型区分冀张薯8号和Y2,平均正确识别率为77.78%;以支持向量机分类模型区分荷兰十五Q8、冀张薯12号和兴佳2号,平均正确识别率为87.23%。该研究建立的8种马铃薯种薯分步骤、分层分类识别模型的平均正确识别率达89.75%,表明高光谱光谱分析技术可用于马铃薯微型种薯的分类检测。Using hyperspectral analysis technology combined with pattern recognition,the classification and detection methods of eight potato micro seed potatoes(Daxiyang,Holland-14,Holland fifteen 041,Holland fifteen Q8,Jizhangshu 12,Jizhangshu 8,Xingjia 2 and Y2)were established.276 seed tuber samples were collected.The original spectra of 860-1700 nm were preprocessed by standardize,11 points Savitzky-Golay smoothing and 4 points differential first derivative.Principal component analysis showed that the cumulative contribution rate of the first three principal components was 95.12%,including most information of the original spectra,and could be used as classification variables.Then,linear discriminant analysis,BP neural network and support vector machine were used for classification modeling.Finally,the classification models of 8 potato micro seed potatos were established by stratification and step by step.Firstly,the linear discriminant analysis model was used to distinguish Daxiyang,Holland-14,Holland fifteen 041 and other varieties.The average correct recognition rate was 88.79%.Then BP neural network model was established to divide the samples of other varieties into two categories:Jizhangshu 8,Y2,and Holland fifteen Q8,Jizhangshu 12,Xingjia 2,with an average correct recognition rate of 93.24%.Finally,the BP neural network model was used to distinguish Jizhangshu 8 and Y2,with the average correct recognition rate of 77.78%;and the support vector machine classification model was used to distinguish Holland fifteen Q8,Jizhangshu 12 and Xingjia 2,with the average correcct recognition rate of 87.23%.The method was applied to the classification detection of eight potato seed potatos with the average correct recognition rate of 89.75%,which indicated that the hyperspectral analysis technology could be used for the classification and detection of potato micro seed potatos.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7