基于IMM算法的火控系统机动目标检测方法  

A Maneuvering Target Detection Method for Fire Control SystemBased on the IMMAlgorithm

在线阅读下载全文

作  者:康警予 郭锐 陈忠[2] 蔡骏[2] 王晖[1] KANG Jing-yu;GUO Rui;CHEN Zhong;CAI Jun;WANG Hui(Military Exercise and Training Center,Academy of Armored Force Engineering,Beijing 100072,China;The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing 210007,China)

机构地区:[1]陆军装甲兵工程学院演训中心,北京100072 [2]中国电子科技集团公司第二十八研究所,南京210007

出  处:《火力与指挥控制》2020年第11期26-31,共6页Fire Control & Command Control

基  金:装备发展部“十三五”预先研究课题资助项目(315105204)。

摘  要:受观测噪声影响,火控系统雷达无法精确搜索机动目标,导致快速打击反应能力降低。为此,提出一种基于交互式多模型算法的火控系统机动目标检测方法。引入Markov跳变系统,对机动目标未知的运动状态建立运动模型集合;并通过交互式多模型算法,精确估计机动目标的位置状态,便于精确解算火控系统雷达天线捕获机动目标所需的姿态角。数值仿真结果验证了所提方法的机动目标检测性能,明显优于基于卡尔曼滤波器和直接基于目标状态观测值的机动目标检测性能。The radar of the fire control system fails to accurately detect the maneuvering target due to the observation noise.As a result,the fact is of great salience that the rapid response and strike capability of fire control system is remarkably decreased.To resolve this problem,a maneuvering target detection method for fire control system based on the Interacting Multiple Model(IMM)algorithm is proposed.The Markov Jump System(MJS)is introduced here to model the maneuvering target state unknown to the observers.Meanwhile,the maneuvering target location can be estimated by implementing the IMM algorithm,which is of importance to calculate the attitude of the radar antenna of the fire control system so as to accurately capture the maneuvering target.The numerical simulation is carried to verify that the performance of the maneuvering target detection based on the proposed method is significantly superior to that based on either the kalmanfilter or the direct observation value or the classical Kalman filter.

关 键 词:火控系统 机动目标检测 MARKOV 跳变系统 交互式多模型算法 状态估计 

分 类 号:TJ03[兵器科学与技术—兵器发射理论与技术] TP271.4[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象