基于改进粒子滤波的锂离子电池健康状态估计  被引量:3

State of Health Estimation of Lithium-Ion Battery Based on Improved Particle Filter

在线阅读下载全文

作  者:徐超 李立伟 杨玉新 Xu Chao;Li Liwei;Yang Yuxin(School of Electrical Engineering,Qingdao University,Qingdao 266071;Weihai Innovation Institute,Qingdao University,Qingdao 266071;Library,Qingdao University,Qingdao 266071)

机构地区:[1]青岛大学,电气工程学院,青岛266071 [2]青岛大学,威海创新研究院,青岛266071 [3]青岛大学,图书馆,青岛266071

出  处:《汽车技术》2020年第12期19-24,共6页Automobile Technology

基  金:山东省科技发展计划项目(2011GGB01123);山东省重点研发计划项目(2017GGX50114)。

摘  要:为了准确估计电池当前健康状态(SOH),提出一种基于改进粒子滤波算法的电池SOH在线评估方法。首先针对传统萤火虫优化算法的不足,提出了一种改进萤火虫算法替代传统粒子滤波的重采样,然后从锂离子电池工作时的可测参数中提取在线健康指标(HI),建立HI与SOH之间的映射模型,并将其应用于状态空间模型的观测。利用马里兰大学先进寿命周期工程中心(CALCE)公布的试验测量数据进行验证,结果表明,该方法对具有非线性和非高斯特性的锂离子电池降解过程的状态估计具有良好的适应性。The State Of Health(SOH)estimation is one of the key functions of lithium-ion Battery Management System(BMS).In order to accurately estimate the current health state of battery,this paper proposes an improved firefly algorithm and replaces the resampling of the traditional particle filter in view of the shortcomings of the traditional firefly algorithm.And then the measurable parameters of lithium-ion battery are extracted on line health index Hi,the mapping model between Health Index(HI)and battery SOH is established and applied to the observation of state space model.An on-line evaluation method of battery SOH based on improved particle filter algorithm is proposed.Finally,based on a set of experimental data of battery capacity published by the University of Maryland Center for Advanced Life Cycle Engineering(CALCE),it is proved that the method has good adaptability to the degradation process of lithium-ion batteries with nonlinear and non-Gaussian characteristics.

关 键 词:锂离子电池 SOH估计 粒子滤波算法 萤火虫算法 健康指标 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象