检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴勇[1] 王斌君[1] 翟一鸣 仝鑫 WU Yong;WANG Bin-jun;ZHAI Yi-ming;TONG Xin(College of Police Information Engineering and Cyber Security,People’s Public Security University of China,Beijing 100240,China)
机构地区:[1]中国人民公安大学警务信息工程与网络安全学院,北京100240
出 处:《计算机科学》2020年第12期279-284,共6页Computer Science
基 金:公安部科技强警基础专项(2018GABJC03);中国人民公安大学拔尖人才培养专项资助研究生科研创新项目(2019bsky002)。
摘 要:网络嵌入旨在将网络节点嵌入到一个低维向量空间且最大程度地保存原有网络的拓扑结构及其属性。相比无向网络,有向网络具有特殊的非对称传递性,可体现在节点之间的高阶相似度量中,如何较好地保存这一特性是当前有向网络嵌入研究的热点和难点。针对此问题,通过引入有向网络的共引网络,设计了共引信息的度量函数,给出了一种有向网络高阶相似度量指标融合共引信息的统一框架,提出了可以保存非对称传递性的共引增强的高阶相似保存网络嵌入模型(Co-Citation Enhancing High-Order Proximity preserved Embedding,CCE-HOPE)。在4个真实数据集上进行链路预测实验的结果表明,不同高阶相似度量指标下,不同比重共引信息对效果影响具有一般规律,因此可以给出比重的最佳取值范围;在此范围内,与现有方法相比,CCE-HOPE方法可有效提高链接预测的准确度。Network embedding algorithms embed a network into a low-dimensional vector space where the structure and the inherent properties of the graph can be preserved to the greatest extent.Compared with undirected networks,directed networks have special asymmetric transitivity which can be reflected in the high-order similarity measurement between nodes.A hot spot and difficulty of current directed network embedding research is how to preserve this feature well.Aiming at this problem,this paper introduces the co-citation network of directed networks and designs a metric function of the co-introduction information.At the same time,a unified framework is created for fusing the co-citation information and the high-order similarity metrics of directed networks.Then,this paper proposes a co-citation enhancing high-order proximity preserved embedding method,called CCE-HOPE,which can preserve the asymmetric transitivity well.In experiments,the proposed model is evaluated on link prediction using four real data sets.The results show that under different high-order similarity metrics,the performance of different proportions of co-introduction information follows a general regularity,so the optimal range of the proportion can be determined.Compared with other state-of-the-art methods,the method can effectively improve the accuracy of link prediction when the proportion of co-introduction information is within the optimal range.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7