检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘雅轩[1] 陈彤 LIU Yaxuan;CHEN Tong(School of Economics,Xinjiang University of Finance and Economics,Urumqi 830012,China)
出 处:《干旱区资源与环境》2020年第11期36-43,共8页Journal of Arid Land Resources and Environment
基 金:国家自然科学基金项目(41761033);新疆财经大学科研基金项目(XJUFE2019K033)资助。
摘 要:探讨城市公园绿地对房价的影响机制,有助于改善城市公园绿地的空间配置,进而加快宜居城市建设,提高城市竞争力和新型城镇化水平。本研究以乌鲁木齐市为研究区域,基于2019年6个城区16个公园绿地周边的1789个住宅POI数据,从区位、建筑结构、邻里关系三个维度选取14个解释变量,构建住宅市场特征价格模型并结合弹性与边际价格分析,量化了乌鲁木齐市公园绿地对住宅价格的影响。研究结果表明:乌鲁木齐市住宅价格与到公园绿地的距离呈负相关关系,在研究区内,到公园绿地的距离增加1km,住宅价格平均下降2.184万元;乌鲁木齐市公园绿地的用户评论得分情况对住宅价格有显著影响,公园得分每上升一个单位,周边住宅价格平均上涨1.320万元;最近公园的质量每提升一个等级,周边住宅价格平均上涨8.471万元;解释变量对住宅价格的贡献程度为房屋面积>绿化率>距最近公园的距离>容积率>最近公园得分>物业费>小区500m以内的公交站台数>距最近商圈的距离;乌鲁木齐市公园绿地资本化效应的最大影响距离为2.886km。Exploring the mechanism of the impact of green spaces in urban parks on housing prices is helpful to improve the space allocation of green spaces in urban parks and speed up the construction of livable cities,which is of great significance to improving the competitiveness of cities and the level of new urbanization.Based on the POI data of 1,789 residential areas around 17 parks and green spaces in 6 urban areas of Urumqi in 2019,14 explanatory variables were selected from three dimensions:location,building structure,and neighborhood relationship,to construct a characteristic price model for the residential market.Combined with elasticity and marginal price analysis,the impact of park green space on residential prices was quantified.The research results show that the price of residential houses in Urumqi had a negative correlation with the distance to the park green space.In the study area,the distance to the park green space increased by 1 km,and the average price of the house dropped by 21,840 Yuan.The scores of users′comments on parks and greenbelts in Urumqi had a significant impact on housing prices.For every unit of increase in score of users′comments on parks,the average price of surrounding residential houses increased by 13,200 Yuan.When the quality of the nearest park was upgraded by one level,the average price of surrounding residential buildings increased by 84,710 Yuan.The degree of contribution of the explanatory variables to the housing price was house area>greening rate>distance from the nearest park>floor ratio>score of the nearest park>property fee>number of bus stops within 500 m of the community>distance from the nearest commercial district.The maximum impact distance of the capitalization of park green space in Urumqi was 2.886 km.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.188.218