突发公共卫生事件下政府应急管理监管策略研究  被引量:19

Government Supervision Strategy in the Emergency Management based on Public Health Emergencies

在线阅读下载全文

作  者:卢丙杰 朱立龙 LU Bing-jie;ZHU Li-long(School of Business,Shandong Normal University,Ji'nan,250014;School of Management,Shandong University,Ji'nan 250100)

机构地区:[1]山东师范大学商学院,济南250014 [2]山东大学管理学院,济南250100

出  处:《软科学》2020年第12期33-40,共8页Soft Science

基  金:国家社会科学基金一般项目(20BGL272);教育部人文社会科学基金规划项目(17YJA630147);山东省自然科学基金面上项目(ZR2019MG017)。

摘  要:基于突发公共卫生事件,构建了地方政府、公众和新媒体策略选择的博弈模型,求解并分析了不同条件下的Nash均衡,并运用Matlab 2017进行仿真分析。研究表明:(1)降低公众投诉举报成本、增加公众获得的奖励、增强公众对潜在风险的感知,不仅可以促使公众参与监管,还可以促使地方政府及时公开信息;(2)地方政府及时公开信息所付出的成本越高,有所隐瞒时受到的惩罚、追责越小,新媒体参与监管的积极性就越高;(3)新媒体“查证后报道”带来的流量价值越小,公众选择“投诉举报”策略的概率就越大。最后,结合模型求解与仿真分析,为突发公共卫生事件的应急管理监管提出对策与建议。Based on public health emergencies like COVID-19,this paper constructs a game model of the local government,the public and new media,and it analyzes the Nash equilibrium under different conditions.It also conducts a simulation analysis with Matlab 2017 software.The result shows that:first,reducing the cost of public complaints and reports,increasing the rewards for the public,and enhancing the public*s perception of potential risks can not only promote the public to participate in supervision,but also prompt the local government to disclose information in time;secondly,the higher the cost for the local government to disclose information in time,the less the punishment and accountability for concealment,and the higher the enthusiasm for new media to participate in supervision;what's more,the smaller the network flux value generated by the new media’s report after verification",the more likely the public will choose the"complaints and reports"strategy.Finally,combined with the model solution and simulation analysis,the paper proposes countermeasures and suggestions for the local government,the public and the new media to participate in the emergency management of public health emergencies.

关 键 词:突发公共卫生事件 应急管理 混合策略博弈 NASH均衡 

分 类 号:C939[经济管理—管理学] D630[政治法律—政治学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象