检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林鹏飞[1] 翁剑成[1] 胡松 荆云琪 尹宝才 LIN Peng-fei;WENG Jian-cheng;HU Song;JING Yun-qi;YIN Bao-cai(Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology,Beijing 100124,China)
机构地区:[1]北京工业大学交通工程北京市重点实验室,北京100124
出 处:《交通运输系统工程与信息》2020年第6期178-183,204,共7页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(52072011,U1811463);北京市科技新星计划项目(Z171100001117100).
摘 要:刷卡数据为研究公共交通乘客长期出行规律提供了数据基础.利用北京市2018年4~5月的刷卡数据,通过提取乘客活动地,推断居住地位置和识别活动类型3个步骤构建乘客个体活动链;基于PrefixSpan算法提取普通卡、老年卡、学生卡乘客活动链的频繁序列模式,采用Levenshtein距离度量3类乘客活动链日维度的相似性.结果表明:每类用户中约70%乘客的频繁活动序列是对称模式;普通卡和学生卡用户的相似性高于老年卡用户,平均值分别为0.645、0.649和0.530;3类乘客的工作日与非工作日活动链具有明显差异,而工作日之间或非工作日之间具有较高相似性.本文有助于定量解析公共交通乘客的出行活动规律,为科学优化公共交通服务提供依据.Smart card data provides the data basis for the study of long-term travel regularity of public transport passengers.Based on the smart card data from April to May 2018 in Beijing,this study constructed the passenger activity chain in three steps,including extracting the passenger activity location,inferring the residence location,and identifying the activity type.The PrefixSpan algorithm was used to extract the frequent sequence patterns of activity chains for regular,senior and student card users.Levenshtein distance was applied to measure the day-today similarity of the three types of passengers'daily activity chain.The results show that about 70%of users in each type have a symmetrical pattern of frequent activity sequences.The similarity of regular card and student card users is higher than senior card users,with an average of 0.645,0.649,and 0.530,respectively.For all the three types of users,the differences in day-to-day activity chain sequences between workdays and weekends are larger,but the similarities within workdays or within weekends are higher.This study helps to quantitatively analyze the regularity of passenger travel and activity and provides evidence for scientific optimization of public transport services.
关 键 词:智能交通 相似性 序列挖掘 公共交通乘客 PREFIXSPAN算法
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15