基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络  被引量:1

Lightweight convolutional neural network based on cross-channel fusion and cross-module connection

在线阅读下载全文

作  者:陈力 丁世飞[1] 于文家 CHEN Li;DING Shifei;YU Wenjia(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou Jiangsu 221116,China)

机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116

出  处:《计算机应用》2020年第12期3451-3457,共7页journal of Computer Applications

基  金:国家自然科学基金资助项目(61672522,61976216,61379101)。

摘  要:针对传统卷积神经网络参数量过多、计算复杂度高的问题,提出了基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络架构C-Net。首先,提出了跨通道交叉融合的方法,它在一定程度上克服了分组卷积中各分组之间存在缺乏信息流动的问题,简单高效地实现了不同分组之间的信息通信;其次,提出了一种跨模块连接的方法,它克服了传统轻量级架构中各基本构建块之间彼此独立的缺点,实现了同一阶段内具有相同分辨率特征映射的不同模块之间的信息融合,从而增强了特征提取能力;最后,基于提出的两种方法设计了一种新型的轻量级卷积神经网络架构C-Net。C-Net在Food101数据集上的准确率为69.41%,在Caltech256数据集上的准确率为63.93%。实验结果表明,与目前先进的轻量级卷积神经网络模型相比,C-Net降低了存储开销和计算复杂度。在Cifar10数据集上的消融实验验证了所提出的两种方法的有效性。In order to solve the problems of too many parameters and high computational complexity of traditional convolutional neural networks,a lightweight convolutional neural network architecture named C-Net based on cross-channel fusion and cross-module connection was proposed.Firstly,a method called cross-channel fusion was proposed.With it,the shortcoming of lacking information flow between different groups of grouped convolution was solved to a certain extent,and the information communication between different groups was realized efficiently and easily.Then,a method called crossmodule connection was proposed.With it,the shortcoming that the basic building blocks in the traditional lightweight architecture were independent to each other was overcome,and the information fusion between different modules with the same resolution feature mapping within the same stage was achieved,enhancing the feature extraction capability.Finally,a novel lightweight convolutional neural network architecture C-Net was designed based on the two proposed methods.The accuracy of C-Net on the Food101 dataset is 69.41%,and the accuracy of C-Net on the Caltech256 dataset is 63.93%.Experimental results show that C-Net reduces the memory cost and computational complexity in comparison with the state-ofthe-art lightweight convolutional neural network models.The ablation experiment verifies the effectiveness of the two proposed methods on the Cifar10 dataset.

关 键 词:卷积神经网络 轻量级 分组卷积 跨通道交叉融合 快捷连接 跨模块连接 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象