农村物流取送一体化协同配送路径规划  被引量:1

Vehicle routing planning with pickup and delivery of rural logistics collaborative distribution

在线阅读下载全文

作  者:张守京[1] 白美霞 徐进 ZHANG Shoujing;BAI Meixia;XU Jin(School of Mechanical and Electrical Engineering/Xi’an Key Laboratory of Modern Intelligent Textile Equipment,Xi’an Polytechnic University, Xi’an 710048, China)

机构地区:[1]西安工程大学机电工程学院/西安市现代智能纺织装备重点实验室,陕西西安710048

出  处:《西安工程大学学报》2020年第6期59-66,共8页Journal of Xi’an Polytechnic University

基  金:科技创新平台建设工程/重点实验室建设项目(2019220614SYS021CG043);陕西省教育厅科研计划项目(17JK0321)。

摘  要:针对农村物流存在因订单需求分散、配送中心之间重复路径较多,导致的配送成本和车辆空载率较高等问题,结合农村电商取送货双向物流的特点,提出了取送货一体化协同配送策略。以配送成本最小建立多中心协同配送数学模型,通过设计自适应转移策略并改进交叉算子,采用蚁群遗传算法对车辆路径进行求解,并利用Matlab进行仿真验证。实验结果表明:蚁群遗传算法能快速找到最优解;取送货一体化多中心协同配送能够有效降低农村物流配送成本,提高车辆满载率,车辆配送成本比传统配送成本降低40.93%,车辆满载率提高10.55%。Aiming at the problem of high distribution cost and empty loading rate in rural logistics caused by scattered order demands and multiple repeated routes between distribution centers,combined with the characteristics of two-way rural e-commerce logistics,an integrated collaborative distribution strategy of pickup and delivery was put forward.The mathematical model of multi-center collaborative distribution was established with the minimum distribution cost,and the vehicle routing was solved by ant colony genetic algorithm with the adaptive transfer strategy and improved crossover operator,and the simulation was verified by Matlab.The experimental results show that the ant colony genetic algorithm can find the optimal solution quickly,and the strategy of integrated multi-center cooperative distribution with pickup and delivery can reduce the cost of rural logistics distribution and increase the vehicle full load rate effectively.The cost of vehicle distribution is reduced by 40.93%and the vehicle full load rate is increased by 10.55%as opposed to the traditional distribution.

关 键 词:农村物流 协同配送 路径规划 蚁群遗传算法 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象