数字化装甲兵指挥人才培养质量评估模型  被引量:2

A Quality Evaluation Model of the Digital Armored Force Command Talents Fostering

在线阅读下载全文

作  者:刘忠民 叶佩军[3,4] 戴迪 王飞跃 LIU Zhong-Min;YE Pei-Jun;DAI Di;WANG Fei-Yue(University of Chinese Academy of Sciences,Beijing 100190,China;Army Academy of Armored Forces,Beijing 100072,China;The State Key Laboratory of Management and Control for Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;Institute of Intelligent Education,Qingdao Academy of Intelligent Industries,Qingdao Shandong 266109,China)

机构地区:[1]中国科学院大学,北京100190 [2]陆军装甲兵学院,北京100072 [3]中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190 [4]青岛智能产业研究院,山东青岛266109

出  处:《指挥与控制学报》2020年第4期388-392,共5页Journal of Command and Control

摘  要:建立基于BP神经网络的数字化装甲兵指挥人才培养质量评估模型,给出人才质量评价指标与培养要素的映射关系,验证基于BP神经网络解决非线性人才培养质量评估的技术可行性,为导入大量数据验证人才培养质量评估模型奠定理论基础.给出人才培养质量评估结果,实验结果表明BP神经网络能有效地解决人才培养质量评估中的非线性问题,评估结果准确、稳定,这为人才培养体系构建和辅助决策技术的实现提供技术途径和理论基础.A quality evaluation model for the development of digital armored force command personnel based on BP neural network is established.The relationship between evaluation indicators and development elements for talent quality are given to verify the technical feasibility of solving the nonlinear talent development assessment based on BP neural network,which lays a theoretical foundation for importing a large number of data to verify the algorithm of talent development assessment.The results of talent development assessment are given by validating the data.The experiments show that the BP neural network can effectively solve the non-linear problem accurately and stably in the assessment,which provides a technical approach and theoretical basis for the realization of intelligent talent development assessment and assistant decision-making technology.

关 键 词:BP神经网络 指挥人才 人才培养 评估模型 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] E211[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象