基于分布估计算法LSSVM的锂电池SOC预测  被引量:8

Prediction for SOC of lithium-ion batteries by estimating the distribution algorithm with LSSVM

在线阅读下载全文

作  者:成文晶 潘庭龙[1] CHENG Wenjing;PAN Tinglong(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,Jiangsu,China)

机构地区:[1]江南大学物联网工程学院,江苏无锡214122

出  处:《储能科学与技术》2020年第6期1948-1953,共6页Energy Storage Science and Technology

基  金:国家自然科学基金项目(61672266)。

摘  要:基于最小二乘支持向量机(LSSVM)的锂电池荷电状态(SOC)预测模型收敛速度快且得到的是全局最优解,具有较强的预测能力,然而最小二乘支持向量机的参数选择会对预测结果产生较大的影响,因此提出了基于分布估计算法(EDA)最小二乘支持向量机的锂电池SOC预测方法。以锂电池工作电压、电流以及温度为输入量,电池SOC为输出量使用LSSVM建立非线性系统模型,并利用分布估计算法对模型正则化参数λ和径向基核宽度μ进行优化,从而得到最优模型。仿真结果表明,与常规的锂电池SOC预测模型相比,本文提出的EDA-LSSVM方法具有较高的SOC预测精度。The prediction of the state of charge(SOC)of lithium-ion batteries by the least squares support vector machine(LSSVM)shows a faster convergence speed and gives an extraordinary method for the global optimal solution.The prediction ability is enhanced more than ever before.However,the parameter selection of the LSSVM will greatly affect the prediction result.A prediction method for the SOC of lithium-ion batteries by estimating the distribution algorithm(EDA)with an LSSVM is proposed herein.The operating voltage,current,and temperature of the lithium-ion batteries are used as the input quantities.The SOC of the batteries is used as the output quantity.Moreover,a non-linear system model is built using the LSSVM.The EDA is designed to optimize the regularization parameter and the radial basis kernel width of the model.We then obtain the optimal model.The simulation results show that compared with the conventional prediction model for the SOC of lithium-ion batteries,the proposed EDA-LSSVM method has a higher prediction accuracy for the SOC.

关 键 词:锂电池 荷电状态预测 分布估计算法 最小二乘支持向量机 

分 类 号:TM911[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象