检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Liu Qiong Wu Zhiqiang Huang Zuoxin Zhang Feng Zhao Yi
机构地区:[1]Research Institute of Petroleum Processing,SINOPEC,Beijing 10083
出 处:《China Petroleum Processing & Petrochemical Technology》2020年第4期101-107,共7页中国炼油与石油化工(英文版)
基 金:We gratefully acknowledge the support from the China Petrochemical Corporation funding(Sinopec Group,No.117022)on this work.
摘 要:Diesel engine technology innovation causes excessive soot accumulated in engine oil.Due to its detrimental effect on lubricant and diesel engine,improving the dispersibility of engine oil to restrain soot aggregation efficiently is the key technique for formulations.In this study,the aggregation of soot and interaction between dispersant and soot were investigated by molecular dynamic simulation.It was found that the molecular interaction between the dispersant and the soot aggregation system had a significant influence on disrupting the soot aggregation.Bis-PIBSI was more beneficial to having more interaction sites with soot molecules,while the mono-PIBSI with a high proportion of polar groups had stronger interaction with soot molecules.According to the simulation result,suggestions for use of additives were proposed.Carbon black dispersancy test was exploited to verify the dispersion effect of different dispersants on carbon black.The results indicate that mono-PIBSI and bis-PIBSI added at suitable mixture ratio to lubricant could perform good dispersion ability.
关 键 词:engine oil SOOT AGGREGATION DISPERSANT dispersancy molecular interaction
分 类 号:TE626.3[石油与天然气工程—油气加工工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49