检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨丹[1,2,3] 刘国如 任梦成 裴宏杨 YANG Dan;LIU Guo-ru;REN Meng-cheng;PEI Hong-yang(School of Information Science&Engineering,Northeastern University,Shenyang 110819,China;Key Laboratory of Infrared Optoelectric Materials and Micro-nano Devices,Liaoning Province,Northeastern University,Shenyang 110819,China;Key Laboratory of Data Analytics and Optimization for Smart Industry,Ministry of Education,Northeastern University,Shenyang 110819,China)
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819 [2]东北大学辽宁省红外光电材料及微纳器件重点实验室,辽宁沈阳110819 [3]东北大学智能工业数据解析与优化教育部重点实验室,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2021年第1期7-14,共8页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(51607029,61836011).
摘 要:针对病变视网膜血管结构的计算机辅助诊断问题,提出了一种多尺度卷积核U-Net模型的视网膜血管分割方法.在U-Net模型基础上设计了融合Inception模块和最大索引值上采样方法的多尺度卷积神经网络结构.在网络训练阶段,采取旋转、镜像等操作进行数据集扩充,运用CLAHE算法进行图像预处理;训练后得到的双通道特征图,进行Softmax归一化;最后通过改进的代价损失函数对归一化结果迭代优化,得到完整的视网膜血管分割模型.实验结果表明,所提方法在DRIVE数据集上分割的准确率达到0.9694,灵敏性达到0.7762,特异性达到0.9835,比U-Net模型具有更优的分割效果和泛化能力,与其他现存方法相比具有一定的竞争力.Aiming at the computer-aided diagnosis of diseased retinal vascular structure,a retinal blood vessel segmentation method of multi-scale convolution kernel U-Net model was proposed.Based on the U-Net model,a multi-scale convolutional neural network structure combining with the Inception module and the maximum index value upsampling method was designed.In the network training stage,operations such as rotation and mirroring were used to expand the data sets,and the CLAHE algorithm was used for image preprocessing.The dual-channel feature map obtained after training was normalized by Softmax.Finally,the normalized result was iteratively optimized by the improved cost loss function,then a complete retinal vessel segmentation model was obtained.Experimental results showed that the proposed method on the DRIVE data set achieved an accuracy of 0.9694,a sensitivity of 0.7762,and a specificity of 0.9835.The proposed method has better segmentation effect and generalization ability than the U-Net model,and shows its competitive results compared with other existing methods.
关 键 词:视网膜血管 多尺度卷积核 U-Net模型 Inception模块 CLAHE算法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.238.74