检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛震 于莲芝[1] 胡婵娟 XUE Zhen;YU Lian-zhi;HU Chan-juan(School of Optical-Electrical and Computer Engineering,University of Shanghai forScience and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《计量学报》2020年第12期1475-1481,共7页Acta Metrologica Sinica
基 金:国家自然科学基金(61603257)。
摘 要:为提高运动目标检测的识别效果,通过分析、综合比较各种运动目标检测算法的优劣性,提出了基于全局自适应帧差法和基于码本模型的背景减除法对同一运动目标进行检测。通过对运动目标检测提取运动目标的掩膜,对掩膜进行外接矩形分析,从而得到包围运动目标的矩形框;将矩形框内的图片截取出来,调整该矩形并提取图片的HOG特征,最后通过训练好的SVM进行分类。在训练过程中,针对难易情况应用自举法对训练器进行优化。实验表明,与传统HOG+SVM多尺度检测算法相比,该方法在速度和准确性上可提升20%左右,可作为运动目标检测与识别的参考方法。To improve the recognition of moving target detection,the pros and cons of various moving target detection algorithms were analyzed,the global adaptive frame difference method and the codebook model based background subtraction method was proposed to detect moving targets simultaneously for the same target.The method used the masks of moving target and then analyzed them by rectangles,so that the pictures in the rectangle can be extracted out.Next,adjust the rectangle and extract the HOG features of the image,classify through trained SVM.In the training process,the bootstrap method is applied to optimize the trainer for difficult situations.Experiments show that compared with the traditional HOG+SVM multiscale detection algorithm,this method can increase the speed and accuracy by about 20%,and it can be used as a reference method for moving target detection and recognition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.127.26