3D Printing of Cell-Container-Like Scaffolds for Multicell Tissue Engineering  

在线阅读下载全文

作  者:Xiaoya Wang Meng Zhang Jingge Ma Mengchi Xu Jiang Chang Michael Gelinsky Chengtie Wu 

机构地区:[1]State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China [2]Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China [3]Center for Translational Bone,Joint and Soft Tissue Research.University Hospital Carl Gustav Carus&Faculty of Medicine,Technische Universitat Dresden,Dresden 01307,Germany

出  处:《Engineering》2020年第11期1276-1284,共9页工程(英文)

基  金:The research was supported by the National Key Research and Development Program of China(2016YFB0700803);the National Natural Science Foundation of China(51761135103);Crossdisciplinary Collaborative Teams Program for Science,Technology and Innovation of Chinese Academy of Sciences(JCTD-2018-13);STS Science and Technology Service Network Plan of Chinese Academy of Science(KFJ-STS-QYZD-092);Science and Technology Commission of Shanghai Municipality(17441903700);the German Research Foundation(DFG,GE1133/24-1).

摘  要:The development of an engineered non-contact multicellular coculture model that can mimic the in v iv o cell microenvironment of human tissues remains challenging.In this study,we successfully fabricated a cell-container-like scaffold composed of p-tricalcium phosphate/hydroxyapatite(p-TCP/HA)bioceramic that contains four different pore structures,including triangles,squares,parallelograms,and rectangles,by means of three-dimensional(3D)printing technology.These scaffolds can be used to simultaneously culture four types of cells in a non-contact way.An engineered 3D coculture model composed of human bone-marrow-derived mesenchymal stem cells(HBMSCs),human umbilical vein endothelial cells(HUVECs),human umbilical vein smooth muscle cells(HUVSMCs),and human dermal fibroblasts(HDFs)with a spatially controlled distribution was constructed to investigate the individual or synergistic effects of these cells in osteogenesis and angiogenesis.The results showed that three or four kinds of cells cocultured in 3D cell containers exhibited a higher cell proliferation rate in comparison with that of a single cell type.Detailed studies into the cell-cell interactions between HBMSCs and HUVECs revealed that the 3D cell containers with four separate spatial structures enhanced the angiogenesis and osteogenesis of cells by amplifying the paracrine effect of the cocultured cells.Furthermore,the establishment of multicellular non-contact systems including three types of cells and four types of cells,respectively,cocultured in 3D cell containers demonstrated obvious advantages in enhancing osteogenic and angiogenic differentiation in comparison with monoculture modes and two-cell coculture modes.This study offers a new direction for developing a scaffold-based multicellular non-contact coculture system for tissue regeneration.

关 键 词:3D cell containers Non-contact multicellular coculture Interactions Angiogenesis OSTEOGENESIS 

分 类 号:R318.08[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象