检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程琪芩 万良[1,2] CHENG Qi-qin;WAN Liang(College of Computer Science and Technology,Guizhou University,Guiyang 550025,China;Institute of Computer Software and Theory,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学计算机科学与技术学院,贵州贵阳550025 [2]贵州大学计算机软件与理论研究所,贵州贵阳550025
出 处:《计算机工程与设计》2021年第1期44-50,共7页Computer Engineering and Design
基 金:贵州省科学基金项目(黔科合LH字[2014](7634))。
摘 要:为解决传统机器学习方法特征提取工作艰难导致对跨站脚本检测性能有限的问题,提出应用注意力机制改进编码-解码框架的方法并以此建立模型检测跨站脚本。由卷积神经网络和双向门控循环单元网络并行构成编码器,既考虑输入数据上下文信息,又充分提取有效特征;使用注意力机制解决传统编码-解码框架的“分心问题”;使用门控循环单元网络构成解码器,使用分类器进行分类检测。在收集到的数据集上进行仿真实验,验证了模型的有效性和性能优势。To solve the problem that feature extraction in traditional machine learning methods is difficult,which leads to the limited performance of cross-site script detection,a method to improve the Encoder-Decoder framework using attention mechanism was proposed,and a model for cross-site script detection was established.The Encoder was constructed using the convolutional neural network and the bidirectional gated recurrent unit network in parallel,which considered both the input data context information and the extraction of the effective features.The attention mechanism was used to solve the distraction problem of the traditional Encoder-Decoder model framework.The gated recurrent unit network was used to form the Decoder,and the classi-fier was used for classification detection.Simulation experiments were carried out on the collected data sets to verify the effectiveness and performance advantages of the model.
关 键 词:跨站脚本 编码-解码框架 卷积神经网络 门控循环单元网络 注意力机制
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28