特殊框架下分数(k,m)-一致图的联结数条件研究  

Research on Binding Number of Fractional (k,m)-Uniform Graphs in Special Setting

在线阅读下载全文

作  者:高炜[1] GAO Wei(College of Information Science and Technology,Yunnan Normal University,Kunming,Yunnan,China 650500)

机构地区:[1]云南师范大学信息学院,云南昆明650500

出  处:《昆明学院学报》2020年第6期84-87,共4页Journal of Kunming University

基  金:国家自然科学基金资助项目(11761083).

摘  要:计算机网络中数据传输的可行性可以用特殊条件下分数因子的存在性来衡量.而分数(k,m)-一致图是分数(k,m)-消去图和分数(k,m)-覆盖图的组合.即如果对于任意m条边的子图H,同时存在一个分数k-因子不包含H和另外一个分数k-因子,使得对任意e∈H有h(e)=1,则称为分数(k,m)-一致图.此外,联结数是计算机网络的重要参数,用来衡量网络的稳定性和易受攻击性.因此,通过对联结数和分数(k,m)-一致图的联系研究,给出了特定框架下分数(k,m)-一致图的联结数条件.The feasibility of data transmission in computer networks can be measured by the existence of fractional factors under special conditions. The fractional(k, m)-uniform graph can be regarded as a combination of fractional(k, m)-deleted graph and fractional(k, m)-covered graph. A graph is called a fractional(k, m)-uniform graph if any subgraph H with m edges, with a fractional k-factor that doesn′t contain H and another fractional k-factor satisfies h(e)=1 for any e∈H. Furthermore, the binding number is an important parameter of the computer network to measure the stability and vulnerability of the network. So, studying the relationship between the binding number and the fractional(k, m)-uniform graphs, the binding number condition of fractional(k, m)-uniform graphs in a specific setting is given.

关 键 词: 分数因子 联结数 分数(k m)-一致图 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象