一种基于小波变换的加速度传感器信号降噪方法  被引量:3

An Acceleration Sensor Signal Denoising Method Based on Wavelet Transform

在线阅读下载全文

作  者:陈翠琴[1] 董林 CHEN Cui-qin;DONG Lin(School of Industry and Information,Hainan College of Vocation&Technique,Haikou 570216 China;Beijing Xingyi Sensor Technology Co.,Ltd.,Beijing 100029 China)

机构地区:[1]海南职业技术学院工业与信息学院,海南海口570216 [2]北京星仪传感器技术有限公司,北京100029

出  处:《自动化技术与应用》2020年第12期134-137,共4页Techniques of Automation and Applications

基  金:海南省教育厅教育教学改革项目(编号Hnjg2017-61)。

摘  要:为了提高加速度传感器比较法冲击激励校准处理时频率响应函数估计精度,构建了一种通过小波变换方式来实现对加速度传感器进行信号降噪的高效方法,对相同激励对应的参考与加速度传感器产生的响应信号依次通过小波变换进行处理,通过此阈值实施降噪,最终达到显著降噪的作用。仿真结果得到:与采用小波变换方法进行阈值降噪的过程相比,本文处理方式能够显著提高SNR,显著优化降噪效果,可以达到比小波变换阈值降噪效果更高的信号响应控制精度。采用本文方法可以显著消除加速度传感器进行信号输出时形成的噪声,对加速度传感器输出信号降噪处理后可以使RMSEH明显减小并获得更高平滑度。In order to improve the comparative law impact acceleration sensor calibration frequency response function estimation precision processing,it builds a kind of way by wavelet transform to implement effective method of the acceleration sensor signal noise reduction,for reference corresponding to the same incentives,and response signal produced by the acceleration sensor by wavelet transform are processed in turn,through the threshold de-noising,eventually reach the role of a significant noise reduction.The simulation results are as follows:compared with the process of threshold noise reduction using wavelet transform method,the processing method in this paper can significantly improve SNR,significantly optimize the noise reduction effect,and achieve higher signal response control accuracy than wavelet transform threshold noise reduction effect.The method in this paper can significantly eliminate the noise generated by the signal output of the acceleration sensor,and the noise reduction processing of the output signal of the acceleration sensor can significantly reduce RMSEH and achieve higher smoothness.

关 键 词:加速度传感器 小波变换 信号降噪 降噪效果 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象