检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈芊澍 文晓涛[1,2] 何健 刘浩男 李垒 CHEN Qianshu;WEN Xiaotao;HE Jian;LIU Haonan;LI Lei(College of Geophysics,Chengdu University of Technology,Chengdu 610059,China;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China)
机构地区:[1]成都理工大学地球物理学院,四川成都610059 [2]成都理工大学油气藏地质及开发工程国家重点实验室,四川成都610059
出 处:《石油物探》2021年第1期149-156,174,共9页Geophysical Prospecting For Petroleum
基 金:国家自然科学基金“基于频变信息的流体识别及流体可动性预测”(41774142);国家科技重大专项“致密砂岩储层有效裂缝预测方法研究”(2016ZX05002-004-013)共同资助。
摘 要:裂缝发育程度会影响地震波动力学特征和地震波同相轴的形态,但岩性、物性、流体性质的改变也会影响上述特征的变化。因此,利用单属性预测裂缝会有多解性,地震多属性综合预测裂缝是减少多解性的有效措施。对于多特征输入的预测问题,机器学习有其独特的优势,其中具有较强泛化能力和运算效率的极限学习机算法值得重点考虑。为此,在裂缝发育带预测中引入了极限学习机算法。首先基于测井数据,利用极限学习机预测裂缝发育状况并将预测结果与近似支持向量机分类效果进行对比;然后,利用井旁道地震属性数据进行裂缝识别,分析极限学习机在裂缝预测中的效果与优势;最后通过极限学习机算法对地震属性特征与裂缝带发育程度之间对应关系的学习,将其应用于实际工区。结果表明,相较于近似支持向量机,极限学习机在保证分类准确度的同时训练效率更高,能够综合多种地震属性刻画大尺度裂缝带,实现致密砂岩裂缝储层裂缝带发育程度的有效预测,为裂缝的综合预测提供了新的思路。The degree of fracture development,changes in lithology,petrophysical properties,and fluid properties will affect the dynamic characteristics of seismic waves and the shape of seismic wave events.If fractures are predicted on the basis of a single attribute,multiple solutions are found,and the problem remains undetermined.Carrying out a comprehensive,multi-attribute seismic prediction can be an effective way to reduce the number of solutions.Extreme learning machines(ELMs)possess unique advantages when solving prediction problems with multi-attribute inputs owing to their strong generalization capabilities and computational efficiency.In this study,an ELM was utilized for the prediction of a fracture zone from well logging data.The ELM’s output was compared with that of a proximal support vector machine.Subsequently,the effect of the ELM on fracture prediction was investigated using the near-well seismic attribute.Finally,the ELM algorithm was used to identify the relationship between seismic attribute characteristics and fracture zone development,which was then applied to field data.The results showed that compared with the proximal support vector machine,the ELM offers better training efficiency while ensuring classification accuracy.It can be used to characterize large-scale fracture zones based on a variety of seismic attributes and can effectively predict fracture zones in tight sandstone fracture reservoirs,providing valuable support in the comprehensive prediction of fractures.
关 键 词:裂缝带 地震多属性 极限学习机 近似支持向量机 综合预测
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.207.156