检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:凡航 张雪敏[1,2] 梅生伟[1,2] 杨忠良 FAN Hang;ZHANG Xuemin;MEI Shengwei;YANG Zhongliang(Department of Electrical Engineering,Tsinghua University,Beijing 100084,China;State Key Laboratory of Power System and Generation Equipment,Tsinghua University,Beijing 100084,China;Department of Electronic Engineering,Tsinghua University,Beijing 100084,China)
机构地区:[1]清华大学电机工程与应用电子技术系,北京市100084 [2]电力系统及大型发电设备安全控制和仿真国家重点实验室,清华大学,北京市100084 [3]清华大学电子工程系,北京市100084
出 处:《电力系统自动化》2021年第1期28-35,共8页Automation of Electric Power Systems
基 金:国家重点研发计划资助项目(2018YFB0904200);国家电网有限公司科技项目(SGLNDKOOKJJS1800266)。
摘 要:随着风电场的大规模接入,提高风电场风速的预测精度对于促进可再生能源的消纳具有重大意义。传统的预测方法通常根据风电场单一高度的历史风速进行预测,当预测的时间尺度达到三四小时的时候,预测误差较大。不同高度的风速、风向数据蕴含了风电场内部的时空相关性,数值天气预报数据也体现了风电场周边的大气运动对风速发展规律的影响。文中在输入数据层面,同时引入了不同高度的风速、风向数据和数值天气预报数据。为了充分挖掘数据中的规律,提出了一种新的时空神经网络,采用深度卷积神经网络和双向门控循环单元,分别提取风速、风向等历史数据以及数值天气预报的时空特征,并利用融合后的特征进行风速预测。最后,利用中国东北某风电场的实际测量数据,验证了算法的有效性。With the large-scale integration of wind farms, improving the prediction accuracy of wind speed in wind farms is of great significance to promote the consumption of renewable energy. Traditional prediction methods are usually based on the historical wind speed of a single altitude in the wind farm. When the prediction horizon reaches about three or four hours, the prediction error becomes relatively large. Wind speed and direction data at different altitudes contain the spatiotemporal correlation and the numerical weather prediction data reflects the influence of atmospheric motion around the wind farm on the variation of wind speed.In this paper, wind speed and direction data at different altitudes and numerical weather prediction data are introduced at the input data level. In order to fully exploit the rules of data, a new spatiotemporal neural network(STNN) is proposed. The deep convolutional network and the bidirectional gated recurrent unit are used to extract the spatiotemporal features of historical wind speed, wind direction and numerical weather prediction, respectively. The fused features are used to predict the wind speed.Finally, the actual measurement data of a wind farm in northeast China is used to verify the effectiveness of the algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15