一种基于Newton-Armijo优化的多项式光滑孪生支持向量机  被引量:1

A polynomial smooth twin support vector machines based on Newton-Armijo optimization

在线阅读下载全文

作  者:韦修喜 黄华娟[1,2] WEI Xiuxi;HUANG Huajuan(College of Artificial Intelligence,Guangxi University for Nationalities,Nanning 530006,Guangxi,China;Key Laboratory of Network Communication Engineering,Guangxi University for Nationalities,Nanning 530006,Guangxi,China)

机构地区:[1]广西民族大学人工智能学院,广西南宁530006 [2]广西民族大学网络通信工程重点实验室,广西南宁530006

出  处:《陕西师范大学学报(自然科学版)》2021年第1期44-51,共8页Journal of Shaanxi Normal University:Natural Science Edition

基  金:国家自然科学基金(61662005);广西自然科学基金(2018GXNSFAA294068);广西高校中青年教师科研基础能力提升项目(2019KY0195)。

摘  要:针对光滑孪生支持向量机(smooth twin support vector machines,STWSVM)采用的Sigmoid光滑函数逼近精度低的问题,提出一种基于Newton-Armijo优化的多项式光滑孪生支持向量机(polynomial smooth twin support vector machines based on Newton-Armijo optimization,PSTWSVM-NA)。在PSTWSVM-NA中,引入正号函数,将孪生支持向量机的两个二次规划问题转化为两个不可微的无约束优化问题。随后,引入一族多项式光滑函数对不可微的无约束优化问题进行光滑逼近,并用收敛速度快的Newton-Armijo方法求解新模型。从理论上证明了PSTWSVM-NA模型具有任意阶光滑性,在人工数据和UCI数据集上的实验结果表明该算法具有较高的分类精度和较快的训练效率。In order to solve the problem of low approximation accuracy of sigmoid smooth function adopted by smooth twin support vector machines(STWSVM),a polynomial smooth twin support vector machines based on Newton-Armijo optimization(PSTWSVM-NA)is proposed.In PSTWSVM-NA,the positive sign function is introduced to transform two quadratic programming problems of TWSVM into two non-differentiable unconstrained optimization problems.Then,a family of polynomial smooth functions are introduced to smooth the non-differentiable unconstrained optimization problem,and Newton Armijo method with fast convergence speed is used to solve the new model.It is proved theoretically that the PSTWSVM-NA model has any order smoothness.Experimental results on artificial data and UCI data sets show that the algorithm has higher classification accuracy and faster training efficiency.

关 键 词:孪生支持向量机 多项式 光滑 Newton-Armijo法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象