电机发电特性优化再生制动控制策略的方法  被引量:4

Method of Optimizing Regenerative Braking Control Strategy for Motor Generation Characteristics

在线阅读下载全文

作  者:方桂花[1] 王鹤川 曾标 胡贤东 FANG Gui-hua;WANG He-chuan;ZENG Biao;HU Xian-dong(Mechanical Engineering School Of Inner Mongolia University of Science and Technology,Inner Mongolia Baotou014010,China)

机构地区:[1]内蒙古科技大学机械工程学院,内蒙古包头014010

出  处:《机械设计与制造》2021年第1期134-137,共4页Machinery Design & Manufacture

基  金:内蒙自治区科技创新引导奖励资金项目(KCBJ2018031);内蒙自治区科技创新引导奖励资金项目(2017CXYD-2)。

摘  要:电动汽车制动力的分配策略对整个系统能量回收效率有重要影响,分析了传统再生制动模糊控制策略的优缺点,并结合电机变速变负载的发电特性,对模糊控制策略进行改进,首先建立了电机转速、电池SOC、制动强度与再生制动力矩之间的模糊控制算法,并将模糊控制器输出进行等量划分,然后依据电机发电效率MAP图,设计了最大功率跟踪算法中的变搜索步长三点比较法,最后在Matlab/Simulink与Cruise软件中搭建了控制策略与整车模型模型,进行联合仿真。结果表明设计的控制策略比传统模糊控制策略能量回收效率提高了10.12%。The distribution strategy of electric vehicle braking force has an important influence on the energy recovery efficiency of the whole system.This paper analyzes the advantages and disadvantages of the fuzzy control strategy based on traditional regenerative braking system,and improves the fuzzy control strategy by combining the power generation characteristics of the motor,varying speed and torque.First,a fuzzy control algorithm between motor speed,battery SOC,braking intensity and regenerative braking torque is established.And the output of the fuzzy controller is divided equally.Then,according to the power generation efficiency MAP of motor,the maximum power point tracking method based on variable step size three-point comparison method is designed.Finally,the control strategy and the vehicle model were built in Matlab/Simulink and Cruise software to carry out the joint simulation.The results show that the energy recovery efficiency of the control strategy designed in this paper is 10.12%higher than the efficiency of traditional fuzzy control strategy.

关 键 词:再生制动 模糊控制 效率MAP 最大功率点追踪 

分 类 号:TH16[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象