具有动态学习能力的分层进化粒子群优化算法  被引量:1

A Hierarchical Evolutionary Particle Swarm Optimization Algorithm with Dynamic Learning Ability

在线阅读下载全文

作  者:徐超 单志勇[1,2] 徐好好 XU Chao;SHAN Zhi-yong;XU Hao-hao(School of Information Science and Technology,Donghua University;Ministry of Education,Digital Textile Research Center,Shanghai 201620,China)

机构地区:[1]东华大学信息科学与技术学院 [2]数字化纺织服装技术教育部工程研究中心,上海201620

出  处:《软件导刊》2021年第1期128-131,共4页Software Guide

基  金:国家自然科学基金项目(61602110)。

摘  要:针对粒子群算法(PSO)在优化高维多极值问题时容易陷入局部极值的问题,结合分层进化与动态学习策略,提出一种具有动态学习能力的分层进化粒子群优化算法(DHEPSO)。该算法首先根据粒子适应度值将粒子划分为不同层级,对不同层级粒子采取不同的进化策略,避免迭代后期种群多样性快速消失;然后根据粒子所属层级的不同动态调整粒子学习能力,在保证算法收敛精度情况下提高算法收敛速度;最后将算法在4个典型函数进行测试,结果表明DHEPSO与传统粒子群算法相比,除病态函数外均能快速达到全局最优。同时,问题维数提升对算法的全局收敛能力影响较小,证明该算法具有良好的稳定性。In order to optimize the high-dimensional multi-extreme problem of particle swarm optimization(PSO)which is easy to fall into the problem of local extremum,combining hierarchical evolution and dynamic learning strategies,a hierarchical evolutionary parti⁃cle swarm optimization algorithm with dynamic learning ability(DHEPSO)is proposed.The algorithm first divides the particles into different levels according to the particle fitness value,and then the particles at different levels adopt different evolution strategies to avoid the rapid loss of population diversity in the later iterations,and dynamically adjust the particle learning according to the different levels of the particles’ability to improve the convergence speed of the algorithm while ensuring the convergence accuracy of the algo⁃rithm.Finally,the algorithm is applied to four typical test functions.The results show that DHEPSO achieves the global optimum quick⁃ly except for the morbid function,and the improvement of the problem dimension has a smaller impact on the global convergence abili⁃ty of the algorithm.which proves that the algorithm has good stability.

关 键 词:粒子群算法 高维多极值 学习能力 分层进化 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象