检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王婷婷 WANG Tingting(Institude of Civil Engineering,Linyi Vocational College,Linyi Shangdong 276000,China)
机构地区:[1]临沂职业学院建筑工程学院,山东临沂276000
出 处:《北京测绘》2021年第1期41-45,共5页Beijing Surveying and Mapping
摘 要:针对车载LiDAR点云数据处理复杂、时间长的问题,本文以地物不同特征值作为建筑物自动提取算法的依据,通过点云数据预处理、聚类分析等一系列流程最终实现一般建筑物点云的自动提取。通过两个实验区点云数据的提取与相应的实际地物进行精度分析对比,结果表明本文算法对实例测区环境下的不同建筑物点云提取具有较好的有效性,满足数字城市三维建模的精度要求。To solve the problem of complex and long time data processing in vehicle LiDAR point cloud,the features of ground objects are used as the basis of building automatic extraction algorithm in this paper.Through the pretreatment,clustering analysis and a series of processes of point cloud,it finally achieved the general building point cloud automatic extraction.It carried out experiments in two experimental area and compared the test accuracy with practical accuracy.The result shown that this algorithm had a good effect on the point cloud extraction of different buildings under the environment of the example survey area and the method meet the requirement of 3D modeling of digital city.
分 类 号:P258[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222