检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋海川 顾明伟 张弘韬 董小林 SONG Haichuan;GU Mingwei;ZHANG Hongtao;DONG Xiaolin(Gree Electric Appliances,Inc.of Zhuhai,Zhuhai 519070,Guangdong,China;Shanghai Nuclear Engineering Research and Design Institute,Shanghai 200030,China)
机构地区:[1]珠海格力电器股份有限公司,广东珠海519070 [2]上海核工程研究设计院有限公司,上海200030
出 处:《制冷技术》2020年第6期24-30,共7页Chinese Journal of Refrigeration Technology
摘 要:空调系统自动故障诊断已经成为保障空调机组安全稳定运行的重要手段。针对传统机器学习方法难以自学习和适应故障时间序列特征从而准确性下降的问题,结合长短期记忆(Long-short Term Memory,LSTM)神经网络适用于处理高度时间相关性和高维耦合性数据的特点,本文提出了一种基于LSTM的故障时间序列分析方法处理典型的故障前后时序数据,搭建故障智能诊断模型。采集实际运行的风冷螺杆机组低压保护故障时间序列数据,用于训练LSTM网络。结果表明:基于LSTM网络的模型在测试集上分类准确率达92.86%,验证了其相对于传统的机器学习算法具有更高的准确度,随着数据量的提升,LSTM有望能发挥其更好的预测性能。Automatic fault diagnosis has become an important means to maintain air-conditioning systems steadily and safely running with modules and equipment.Aiming at problem of decreasing performance in that the traditional machine learning methods are often difficult to self-study and be adapted to the characteristics of fault time series,considering the characteristics that long-short term memory(LSTM)network is fit to process high-dimensional,strong coupling and high time-dependent data,this paper proposes a fault time series analysis method based on LSTM to deal with the typical time-series data before and after the fault moment and builds fault intelligence diagnostic model.The fault time series data of low-pressure protection of air-cooled screw units are collected and experimented to train LSTM neural network.The results show that LSTM-based network scores 92.86%on the test sets and scores more than that using traditional machine learning.With the increase of data volume,LSTM is expected to exploit the advantages in time sequences prediction performance to the full.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7