一类时滞微分系统的图灵—霍普夫分岔  

TURING-HOPF BIFURCATION OF A CLASS OF DELAY DIFFERENTIAL SYSTEMS

在线阅读下载全文

作  者:任秀芳[1] 陈雅琪 梁永扬 朱闪闪 Ren Xiufang;Chen Yaqi;Liang Yongyang;Zhu Shanshan(Department of Mathematics,College of Science,Nanjing Agricultural University,Nanjing 210095)

机构地区:[1]南京农业大学理学院数学系,南京210095

出  处:《南京大学学报(数学半年刊)》2020年第1期1-22,共22页Journal of Nanjing University(Mathematical Biquarterly)

基  金:supported by fundamental research funds for the Central Universities Grants KJQN201717,KYZ201537;NSFC Grants 11601232,11775116;NSFC Grant 11601232;a Jiangsu provincial scholarship for overseas research;supported by the Scientific Research and Training program for College students Grant 1823A08 and NSFC Grant 11601232.

摘  要:本文研究了一类具有有限时滞和扩散项的微分系统.我们分析了该系统解的稳定性,包括霍普夫分岔和图灵-霍普夫分岔.特别地,我们给出了用于描述时滞、两个扩散系数、波谱和波数的临界关系的一个清晰的公式,并且推导了与图灵-霍普夫分岔有关的波谱和波数的临界值.本文的结果基于中心流形定理、Hassard规范型理论和一些定量分析的技术.In this paper,we deal with a class of differential systems with finite time delay and diffusion terms.We analyze the stability of the solutions of this system,including the Hopf bifurcation and Turing-Hopf bifurcation.Particularly,we show a sharp formula depicting a threshold relationship among time delay,two diffusion coefficients,wave spectrum and wavenumber,and deduce the critical values of wave spectrum and wavenumber which relate to the Turing-Hopf bifurcation.The result is based on center manifold theorem,Hassard normal form theory and some qualitative analysis techniques.

关 键 词:图灵-霍普夫分岔 时滞 扩散 Hassard规范型 

分 类 号:O175.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象