检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄馨乐 于军琪[1] 赵安军[1] Huang Xinle;Yu Junqi;Zhao Anjun(School of Building Services Science and Engineering,Xi’an University of Architecture and Technology,Xi’an,710055)
机构地区:[1]西安建筑科技大学建筑设备科学与工程学院,西安710055
出 处:《建设科技》2020年第24期113-116,共4页Construction Science and Technology
摘 要:本文提出了一种基于GRA-SA-BP神经网络算法预测商场的空调冷负荷,利用关联度分析法,剔除输入变量中和输出变量间关联度低的因素,采用模拟退火算法对BP神经网络的权值进行优化,并对优化后的神经网络进行训练,得到冷负荷预测结果。结果表明,GRA-SA-BP模型具有较高的预测精度和可靠性,满足实际的应用需求。In this paper,a method based on GRA-SA-BP neural network algorithm is proposed to predict the air-conditioning cooling load of shopping malls.By using the correlation analysis method,the factors with low correlation between input variables and output variables are eliminated.The simulated annealing algorithm is used to optimize the weights of BP neural network,and the optimized neural network is trained to obtain the cooling load prediction results.The results show that the GRA-SA-BP model has high prediction accuracy and reliability,which can meet the actual application requirements.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7