检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘胜 马社祥 孟鑫 李啸 Liu Sheng;Ma Shexiang;Meng Xin;Li Xiao(School of Electrical and Electronic Engineering,Tianjin University of Technology,Tianjin 300384,China;TUT Maritime College,Tianjin University of Technology,Tianjin 300384,China;School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China)
机构地区:[1]天津理工大学电气电子工程学院,天津300384 [2]天津理工大学海运学院,天津300384 [3]天津理工大学计算机科学与工程学院,天津300384
出 处:《计算机应用与软件》2021年第2期158-164,249,共8页Computer Applications and Software
基 金:国家自然科学基金项目(61601326,61371108)。
摘 要:传统交通标志检测方法检测速度慢,且现有深度神经网络对小尺寸交通标志检测精度低。对此提出一个基于YOLOv3的新型端到端卷积神经网络。以YOLOv3为检测框架,对特征提取网络和特征融合网络加以改进,并应用K-means聚类算法生成更适合交通标志的锚点框。充分利用多尺度特征实现了对小尺寸交通标志检测性能的提升。在TT100K (Tsinghua-Tencent 100K)和GTSDB (German Traffic Sign Detection Benchmark)交通标志数据集上进行实验,获得的mAP分别为82.73%和92.66%,运行时间分别为0.037 s和0.033 s。实验结果验证了改进网络的有效性,表明了改进网络的整体性能优于其他检测方法。To solve the problems of slow detection speed of traditional traffic sign detection methods and poor detection effect of the deep neural network for small-scale traffic signs,a new end-to-end convolutional neural network based on YOLOv3 is proposed.It used YOLOv3 as the detection framework.The feature extraction network and feature fusion network were improved,and K-means clustering algorithm was applied to generate anchor boxes which were more suitable for traffic signs.The performance of small-scale traffic sign detection was improved by making full use of multi-scale features.The proposed network was evaluated on TT100K dataset and GTSDB dataset.The results show that the proposed detection network achieves state-of-the-art performance by obtaining mAP of 82.73%and 92.66%with average execution time of 0.037s and 0.033s in two datasets.The experimental results verify the effectiveness of the improved network,and the overall performance of the proposed network is better than other detection methods.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222