检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢剑伟 Lu Jianwei(School of Information Technology and Engineering,Changzhou Institute of Industry Technology,Changzhou 213164,Jiangsu,China;School of Information Science and Engineering,Southeast University,Nanjing 211189,Jiangsu,China)
机构地区:[1]常州工业职业技术学院信息工程与技术学院,江苏常州213164 [2]东南大学信息科学与工程学院,江苏南京211189
出 处:《计算机应用与软件》2021年第2期270-277,共8页Computer Applications and Software
基 金:江苏高校“青蓝工程”项目;常州工业职业技术学院新一代信息技术团队项目(YB201813101005);校企横向课题(B018108)。
摘 要:基于对抗学习提出一种类dropout的具有新型栈式结构的层次支持向量机(D-S-SVM)。随机抽取一定比例的样本攻击其标签类型使其成为对抗样本,利用支持向量机对包含对抗样本的训练集进行对抗学习生成对抗支持向量机(A-SVM)。通过栈式结构原理逐层级联一定数量的子分类器(即A-SVM)构建D-S-SVM。在该模型中计算子分类器输出误差对输入样本的一阶梯度信息,并结合dropout将部分一阶梯度信息嵌入到原输入样本特征中生成新样本作为下一个子分类器的输入。该模型不仅提供了一种新颖的层次结构级联方式,且实验结果表明它能够逐层提高数据分类精度且具有较强的泛化性能。A dropout-like hierarchical support vector machine(SVM)with novel stacked structure(D-S-SVM)based on adversarial learning is proposed in this paper.The adversarial attacks were carried out on a certain percentage of training samples,which were randomly selected from the given training dataset,and the adversarial samples can be obtained.By training the support vector machine(SVM)on the training dataset including the adversarial samples,the resultant adversarial support vector machine(A-SVM)could be generated.Take the A-SVMs as sub-classifiers in a deep learning model,the D-S-SVM could be constructed by stacking a certain number of sub-classifiers based on the stacked generalization principle.In the D-S-SVM,the first-order gradient information corresponding to the output error of the sub-classifier in current layer with respect to the features of all inputs were calculated,and then they were integrated with the ideology of the dropout.The inputs were updated by embedding the resultant first-order gradient information such that the updated inputs could be taken as the inputs of the sub-classifier in next layer.The D-S-SVM provides a novel stacked way and extensive experimental results demonstrate that it can improve the classification precision in a layer-by-layer manner and has better generalization performance.
关 键 词:支持向量机 对抗样本 对抗学习 堆栈结构原理 DROPOUT 分类算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.102.59