检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘欢 戴牡红 龙飞 Liu Huan;Dai Muhong;Long Fei(College of Computer Science&Electronic Engineering,Hunan University,Changsha 410082,China;College of Economic&Management,Changsha University,Changsha 410022,China)
机构地区:[1]湖南大学信息科学与工程学院,长沙410082 [2]长沙学院经济与管理学院,长沙410022
出 处:《计算机应用研究》2021年第2期382-385,共4页Application Research of Computers
基 金:国家社科基金资助项目(18CTQ030)。
摘 要:针对传统线性回归推荐算法没有考虑用户兴趣漂移、活跃度和评分可信度等影响因素,为进一步提高算法的准确度和对用户偏好的拟合度,提出一种融合评分可信度的线性回归推荐算法。首先将用户的兴趣漂移度、活跃度和用户对商品的评价信息综合考虑到用户评分可信度的计算方法中;然后将该方法融合到传统线性回归推荐算法系数矩阵求解过程当中;最后利用优化后的线性回归推荐算法对用户评分进行预测。为了验证该算法的准确性,在Hadoop集群和亚马逊商品评分数据集上与传统的线性回归推荐算法进行了对比,实验结果表明,该算法在处理效率、推荐效果和拟合程度上有明显提高。Aiming at the fact that traditional linear regression recommendation algorithms don’t take into account influencing factors such as user interest drift,activity,and credibility,this paper proposed a linear regression recommendation algorithm incorporated credibility ratings to further improve the accuracy of the algorithm and the fit to user preferences.Firstly,this paper comprehensively considered the user’s interest drift,activity and user evaluation information in the calculation method of user scoring credibility.Then it integrated this algorithm into the coefficient matrix solution process of traditional linear regression recommendation algorithm.Finally,it used the optimized linear regression recommendation algorithm to predict user scoring.In order to verify the accuracy of the algorithm,this paper compared the proposed algorithm with the traditional linear regression recommendation algorithms on Hadoop cluster and Amazon product scoring dataset.The experimental results show that the algorithm has significantly improved the processing efficiency,recommendation effect and fitting degree.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49